metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Meth­­oxy-1-(phenyl­sulfan­yl)prop­yl]tri­phenyl­tin(IV) benzene 0.17-solvate

aInstitut für Chemie – Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Kurt-Mothes-Strasse 2, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de

(Received 11 November 2011; accepted 23 December 2011; online 14 January 2012)

In the title compound, [Sn(C6H5)3(C10H13OS)]·0.17C6H6, the SnIV atom exhibits a slightly distorted tetra­hedral coordination geometry built up by four C atoms, which are the three ipso-C atoms of the phenyl rings and the α-C atom of the deprotonated γ-O-functionalized propyl phenyl sulfide. The benzene mol­ecule lies about a threefold rotoinversion axis.

Related literature

The synthesis of the tin compound was performed according to Block et al. (2009[Block, M., Linnert, M., Gomez-Ruiz, S. & Steinborn, D. (2009). J. Organomet. Chem. 694, 3353-3361.]). For a better understanding of the use and synthesis of heteroatom-functionalized tin compounds, see: Kauffmann et al. (1982[Kauffmann, T., Kriegesmann, R. & Hamsen, A. (1982). Chem. Ber. 115, 1818-1824.]); Linnert et al. (2008[Linnert, M., Wagner, C., Merzweiler, K. & Steinborn, D. (2008). Z. Anorg. Allg. Chem. 634, 43-48.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C10H13OS)]·0.17C6H6

  • Mr = 544.27

  • Trigonal, [R \overline 3]

  • a = 35.338 (3) Å

  • c = 10.5660 (8) Å

  • V = 11427.1 (16) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 220 K

  • 0.46 × 0.31 × 0.15 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (IPDS Software; Stoe & Cie, 1999[Stoe & Cie (1999). IPDS EXPOSE and IPDS INTEGRATE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.648, Tmax = 0.847

  • 22832 measured reflections

  • 4905 independent reflections

  • 4008 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.065

  • S = 0.99

  • 4905 reflections

  • 288 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

C1—Sn 2.196 (2)
C5—S 1.774 (3)
C11—Sn 2.150 (2)
C17—Sn 2.153 (2)
C23—Sn 2.147 (2)

Data collection: IPDS EXPOSE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS EXPOSE and IPDS INTEGRATE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS EXPOSE; data reduction: IPDS INTEGRATE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS EXPOSE and IPDS INTEGRATE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of the tin compound was performed according to Block et al. (2009). The title compound, [Sn(C6H5)3(C10H13OS)].0.17C6H6, crystallizes in the trigonal crystal system in the space group R–3. In crystals isolated molecules of the tin compound and of the solvent molecules (C6H6) were found. No unusual intermolecular interactions exist between them; the shortest distance between non-hydrogen atoms is 3.540 (5) Å [C12···C16(1/3 + x - y, -1/3 + x, 5/3 - z)]. The molecular structure of the tin compound is shown in Figure 1, selected bond lengths and angles are summarized in Table 1. The primary coordination sphere of the tin atom is built up by four carbon atoms, which are the three ipso-C atoms of the phenyl rings and the α-C atom of the deprotonated γ-O-functionalized propyl phenyl sulfide. Thus, the presence of an α-stannylated sulfide could be clearly proved. The C1–S–C5 angle is 105.7 (1)°; therefore the C1 atom has to be described as sp3 hybridized. The configuration of the tin atom is slightly tetrahedral distorted; the C–Sn–C angles range from 103.8 (9) to 114.57 (9)°. The distance between the tin atom and the oxygen atom of the pending methoxy group is 3.100 (2) Å which points to a weak intramolecular interaction between these two atoms. The center of the solvent molecules (C6H6) has -3 site symmetry. Thus, the asymmetric unit contains only one CH group.

Related literature top

The synthesis of the tin compound was performed according to Block et al. (2009). For a better understanding of the use and synthesis of heteroatom-functionalized tin compounds, see: Kauffmann et al. (1982); Linnert et al. (2008).

Experimental top

At -78 °C, to a solution of n-BuLi in n-hexane (1.5 M, 0.01 mol) in toluene (20 ml), TMEDA (0.01 mol) was added and, after stirring for 15 min, PhSCH2CH2CH2OCH3 (0.01 mol). Then, the reaction mixture was stirred for 24 h at room temperature. This was followed by dropwise addtion of Ph3SnCl (0.01 mol) at -78 °C and by stirring for 24 h at room temperature. Then, the reaction mixture was treated with a saturated solution of NH4Cl in water (50 ml). The aqueous phase was washed with diethyl ether (3 × 30 ml). The combined organic phases were dried (Na2SO4), the solvents were removed in vacuo and the crude product was purified by centrifugally accelerated thin layer chromatography with diethyl ether as eluent (yield 3.98 g, 76%).Single crystals suitable for X-ray diffraction measurements were obtained by recrystallization from benzene. Characterization: 1H-NMR (500 MHz, CDCl3): δ 2.19 – 2.25 (m, 2H, CH2CH2CH), 2.89 (s, 3H, OCH3), 3.01 – 3.04 (m, 1H, SnCH), 3.36 – 3.69 (m, 2H, CH2OCH3), 7.18 – 7.19 (m, 1H, p-H, SPh), 7.25 – 7.36 (m, 2H, m-H, SPh), 7.37 – 7.41 (m, 21H, C6H5, Sn(Ph)3 + C6H6), 7.60 – 7.66 (m, 2H, o-H, SPh).119Sn-NMR (186 MHz, CDCl3): δ 126.3 (s).

Refinement top

All H atoms were positioned geometrically and treated as riding model, with C—H bond distances of 0.98, 0.99 and 1.00 Å for CH3, CH2 and CH type H-atoms, respectively, and with Uiso(H) = 1.5 times Ueq(methyl C) and 1.2 times Ueq(non-methyl C). To modify the C—C bond lengths of the benzene molecule the restraint C—C = 1.390 (5) Å was used.

Computing details top

Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell refinement: IPDS EXPOSE (Stoe & Cie, 1999); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.
[3-Methoxy-1-(phenylsulfanyl)propyl]triphenyltin(IV) benzene 0.17-solvate top
Crystal data top
[Sn(C6H5)3(C10H13OS)]·0.17C6H6Dx = 1.424 Mg m3
Mr = 544.27Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 8000 reflections
Hall symbol: -R 3θ = 2.0–25.6°
a = 35.338 (3) ŵ = 1.11 mm1
c = 10.5660 (8) ÅT = 220 K
V = 11427.1 (16) Å3Block, colourless
Z = 180.46 × 0.31 × 0.15 mm
F(000) = 4986
Data collection top
Stoe IPDS
diffractometer
4905 independent reflections
Radiation source: fine-focus sealed tube4008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
area detector scansθmax = 25.9°, θmin = 2.0°
Absorption correction: numerical
(IPDS Software; Stoe & Cie, 1999)
h = 4343
Tmin = 0.648, Tmax = 0.847k = 4342
22832 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
4905 reflections(Δ/σ)max = 0.002
288 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.53 e Å3
Crystal data top
[Sn(C6H5)3(C10H13OS)]·0.17C6H6Z = 18
Mr = 544.27Mo Kα radiation
Trigonal, R3µ = 1.11 mm1
a = 35.338 (3) ÅT = 220 K
c = 10.5660 (8) Å0.46 × 0.31 × 0.15 mm
V = 11427.1 (16) Å3
Data collection top
Stoe IPDS
diffractometer
4905 independent reflections
Absorption correction: numerical
(IPDS Software; Stoe & Cie, 1999)
4008 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.847Rint = 0.061
22832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.065H-atom parameters constrained
S = 0.99Δρmax = 0.57 e Å3
4905 reflectionsΔρmin = 0.53 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46298 (8)0.12671 (8)0.9677 (2)0.0295 (5)
H10.48330.11730.93860.035*
C20.42345 (9)0.08653 (9)1.0248 (3)0.0421 (7)
H30.41340.06270.96450.050*
H20.43300.07791.10000.050*
C30.38543 (9)0.09245 (10)1.0599 (3)0.0460 (7)
H50.36470.06801.11100.055*
H40.39550.11911.10850.055*
C40.33026 (10)0.10298 (12)0.9689 (4)0.0637 (9)
H60.31760.10400.88950.076*
H80.34120.13051.01170.076*
H70.30850.08011.02040.076*
C50.51631 (8)0.14921 (9)1.1889 (2)0.0326 (6)
C60.51916 (8)0.11198 (9)1.1672 (2)0.0364 (6)
H90.50650.09521.09510.044*
C70.54086 (9)0.09969 (10)1.2528 (3)0.0479 (7)
H100.54260.07471.23780.057*
C80.55965 (10)0.12407 (13)1.3589 (3)0.0599 (9)
H110.57450.11591.41530.072*
C90.55662 (11)0.16073 (13)1.3820 (3)0.0639 (10)
H120.56930.17711.45460.077*
C100.53482 (9)0.17353 (10)1.2982 (3)0.0468 (7)
H130.53260.19821.31490.056*
C110.51525 (8)0.20375 (8)0.7377 (2)0.0314 (5)
C120.55158 (9)0.19985 (9)0.7660 (3)0.0414 (6)
H140.54800.17650.81530.050*
C130.59285 (10)0.22978 (10)0.7227 (3)0.0519 (8)
H150.61670.22640.74240.062*
C140.59838 (10)0.26436 (11)0.6508 (3)0.0576 (9)
H160.62610.28470.62170.069*
C150.56311 (11)0.26918 (11)0.6216 (4)0.0666 (10)
H170.56700.29280.57300.080*
C160.52209 (9)0.23920 (9)0.6638 (3)0.0486 (8)
H180.49850.24270.64260.058*
C170.41851 (8)0.11558 (8)0.6483 (2)0.0272 (5)
C180.38006 (8)0.07525 (8)0.6555 (2)0.0323 (6)
H190.36600.06540.73300.039*
C190.36252 (9)0.04966 (9)0.5481 (3)0.0370 (6)
H200.33700.02270.55440.044*
C200.38254 (9)0.06382 (10)0.4326 (3)0.0425 (7)
H210.37060.04650.36110.051*
C210.42028 (10)0.10362 (10)0.4230 (3)0.0496 (7)
H220.43370.11350.34480.060*
C220.43828 (9)0.12899 (9)0.5303 (2)0.0389 (6)
H230.46420.15560.52320.047*
C230.41951 (8)0.19495 (8)0.8547 (2)0.0303 (5)
C240.38656 (9)0.19384 (9)0.7791 (3)0.0392 (6)
H240.37850.17750.70490.047*
C250.36561 (9)0.21676 (10)0.8130 (3)0.0488 (8)
H250.34390.21580.76120.059*
C260.37677 (10)0.24078 (10)0.9222 (3)0.0515 (8)
H260.36240.25570.94520.062*
C270.40953 (11)0.24266 (10)0.9980 (3)0.0515 (8)
H270.41740.25901.07210.062*
C280.43065 (9)0.22026 (9)0.9638 (3)0.0411 (6)
H280.45290.22221.01510.049*
C290.6516 (4)0.28958 (16)0.33330.240 (8)
H290.64120.25970.33330.288*
O0.36531 (6)0.09476 (7)0.94676 (18)0.0436 (5)
S0.49207 (2)0.16969 (2)1.08222 (6)0.03528 (15)
Sn0.450886 (5)0.158288 (5)0.805962 (15)0.02691 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (13)0.0278 (13)0.0288 (12)0.0156 (11)0.0092 (10)0.0061 (10)
C20.0369 (16)0.0352 (15)0.0466 (16)0.0124 (13)0.0094 (12)0.0065 (12)
C30.0356 (16)0.0497 (18)0.0361 (15)0.0090 (14)0.0010 (12)0.0098 (13)
C40.0358 (18)0.062 (2)0.090 (3)0.0214 (16)0.0102 (16)0.0190 (19)
C50.0211 (12)0.0434 (15)0.0255 (12)0.0102 (11)0.0017 (9)0.0030 (10)
C60.0293 (14)0.0427 (16)0.0348 (14)0.0163 (12)0.0009 (11)0.0041 (11)
C70.0363 (16)0.0532 (19)0.0528 (18)0.0214 (15)0.0000 (13)0.0169 (14)
C80.0445 (19)0.075 (2)0.0509 (19)0.0233 (18)0.0127 (15)0.0145 (17)
C90.058 (2)0.082 (3)0.0319 (16)0.0205 (19)0.0189 (14)0.0066 (15)
C100.0459 (17)0.0558 (19)0.0315 (15)0.0199 (15)0.0080 (12)0.0050 (13)
C110.0300 (13)0.0280 (13)0.0336 (13)0.0125 (11)0.0039 (10)0.0024 (10)
C120.0377 (16)0.0354 (15)0.0548 (17)0.0210 (13)0.0004 (13)0.0060 (13)
C130.0337 (16)0.054 (2)0.071 (2)0.0250 (15)0.0023 (14)0.0104 (16)
C140.0305 (16)0.0508 (19)0.077 (2)0.0095 (14)0.0039 (15)0.0191 (17)
C150.047 (2)0.052 (2)0.093 (3)0.0186 (17)0.0033 (18)0.0370 (19)
C160.0344 (16)0.0430 (17)0.068 (2)0.0191 (14)0.0056 (14)0.0145 (14)
C170.0274 (13)0.0287 (13)0.0296 (12)0.0171 (11)0.0063 (10)0.0038 (10)
C180.0302 (14)0.0347 (14)0.0336 (13)0.0176 (12)0.0006 (10)0.0007 (11)
C190.0298 (14)0.0330 (14)0.0455 (16)0.0137 (12)0.0071 (11)0.0076 (12)
C200.0434 (16)0.0478 (17)0.0387 (15)0.0245 (14)0.0101 (12)0.0176 (13)
C210.0495 (18)0.058 (2)0.0286 (15)0.0178 (16)0.0029 (12)0.0052 (13)
C220.0351 (15)0.0398 (16)0.0319 (14)0.0114 (12)0.0002 (11)0.0019 (11)
C230.0284 (13)0.0250 (13)0.0347 (13)0.0114 (11)0.0012 (10)0.0034 (10)
C240.0380 (15)0.0362 (15)0.0436 (15)0.0186 (13)0.0100 (12)0.0035 (12)
C250.0374 (16)0.0437 (17)0.072 (2)0.0250 (14)0.0152 (14)0.0006 (15)
C260.0517 (19)0.0409 (17)0.074 (2)0.0325 (16)0.0040 (16)0.0000 (15)
C270.063 (2)0.0462 (18)0.0528 (18)0.0328 (16)0.0086 (15)0.0151 (14)
C280.0457 (17)0.0374 (15)0.0468 (16)0.0257 (14)0.0118 (12)0.0081 (12)
C290.131 (6)0.323 (12)0.148 (6)0.026 (10)0.042 (5)0.081 (9)
O0.0355 (11)0.0527 (12)0.0421 (11)0.0217 (10)0.0037 (8)0.0044 (9)
S0.0414 (4)0.0333 (3)0.0324 (3)0.0197 (3)0.0108 (3)0.0076 (3)
Sn0.02727 (10)0.02668 (10)0.02675 (10)0.01346 (8)0.00504 (6)0.00283 (6)
Geometric parameters (Å, º) top
C1—C21.532 (4)C14—C151.375 (5)
C1—S1.807 (2)C14—H160.9300
C1—Sn2.196 (2)C15—C161.374 (4)
C1—H10.9800C15—H170.9300
C2—C31.506 (4)C16—H180.9300
C2—H30.9700C17—C221.392 (3)
C2—H20.9700C17—C181.395 (3)
C3—O1.414 (3)C17—Sn2.153 (2)
C3—H50.9700C18—C191.389 (4)
C3—H40.9700C18—H190.9300
C4—O1.426 (4)C19—C201.373 (4)
C4—H60.9600C19—H200.9300
C4—H80.9600C20—C211.375 (4)
C4—H70.9600C20—H210.9300
C5—C61.388 (4)C21—C221.387 (4)
C5—C101.391 (4)C21—H220.9300
C5—S1.774 (3)C22—H230.9300
C6—C71.389 (4)C23—C281.390 (4)
C6—H90.9300C23—C241.396 (4)
C7—C81.367 (5)C23—Sn2.147 (2)
C7—H100.9300C24—C251.390 (4)
C8—C91.374 (5)C24—H240.9300
C8—H110.9300C25—C261.368 (4)
C9—C101.390 (5)C25—H250.9300
C9—H120.9300C26—C271.381 (4)
C10—H130.9300C26—H260.9300
C11—C121.391 (4)C27—C281.380 (4)
C11—C161.391 (4)C27—H270.9300
C11—Sn2.150 (2)C28—H280.9300
C12—C131.382 (4)C29—C29i1.360 (5)
C12—H140.9300C29—C29ii1.360 (5)
C13—C141.368 (4)C29—H290.9300
C13—H150.9300
C2—C1—S112.78 (18)C16—C15—C14120.3 (3)
C2—C1—Sn117.27 (16)C16—C15—H17119.9
S—C1—Sn105.52 (11)C14—C15—H17119.9
C2—C1—H1106.9C15—C16—C11121.2 (3)
S—C1—H1106.9C15—C16—H18119.4
Sn—C1—H1106.9C11—C16—H18119.4
C3—C2—C1115.6 (2)C22—C17—C18117.6 (2)
C3—C2—H3108.4C22—C17—Sn117.01 (17)
C1—C2—H3108.4C18—C17—Sn125.37 (18)
C3—C2—H2108.4C19—C18—C17120.7 (2)
C1—C2—H2108.4C19—C18—H19119.7
H3—C2—H2107.5C17—C18—H19119.7
O—C3—C2108.0 (2)C20—C19—C18120.5 (2)
O—C3—H5110.1C20—C19—H20119.7
C2—C3—H5110.1C18—C19—H20119.7
O—C3—H4110.1C19—C20—C21119.8 (2)
C2—C3—H4110.1C19—C20—H21120.1
H5—C3—H4108.4C21—C20—H21120.1
O—C4—H6109.5C20—C21—C22119.9 (3)
O—C4—H8109.5C20—C21—H22120.1
H6—C4—H8109.5C22—C21—H22120.1
O—C4—H7109.5C21—C22—C17121.5 (3)
H6—C4—H7109.5C21—C22—H23119.3
H8—C4—H7109.5C17—C22—H23119.3
C6—C5—C10119.2 (2)C28—C23—C24117.1 (2)
C6—C5—S124.04 (19)C28—C23—Sn121.46 (18)
C10—C5—S116.7 (2)C24—C23—Sn121.40 (19)
C5—C6—C7120.1 (3)C25—C24—C23121.1 (3)
C5—C6—H9119.9C25—C24—H24119.5
C7—C6—H9119.9C23—C24—H24119.5
C8—C7—C6120.5 (3)C26—C25—C24120.4 (3)
C8—C7—H10119.7C26—C25—H25119.8
C6—C7—H10119.7C24—C25—H25119.8
C7—C8—C9119.8 (3)C25—C26—C27119.5 (3)
C7—C8—H11120.1C25—C26—H26120.2
C9—C8—H11120.1C27—C26—H26120.2
C8—C9—C10120.7 (3)C28—C27—C26120.1 (3)
C8—C9—H12119.6C28—C27—H27120.0
C10—C9—H12119.6C26—C27—H27120.0
C9—C10—C5119.6 (3)C27—C28—C23121.7 (3)
C9—C10—H13120.2C27—C28—H28119.1
C5—C10—H13120.2C23—C28—H28119.1
C12—C11—C16117.2 (2)C29i—C29—C29ii120.006 (1)
C12—C11—Sn122.56 (19)C29i—C29—H29120.0
C16—C11—Sn120.26 (19)C29ii—C29—H29120.0
C13—C12—C11121.8 (3)C3—O—C4112.7 (2)
C13—C12—H14119.1C5—S—C1105.70 (12)
C11—C12—H14119.1C23—Sn—C11107.59 (9)
C14—C13—C12119.5 (3)C23—Sn—C17110.79 (9)
C14—C13—H15120.3C11—Sn—C17104.90 (9)
C12—C13—H15120.3C23—Sn—C1114.23 (9)
C13—C14—C15120.2 (3)C11—Sn—C1103.82 (9)
C13—C14—H16119.9C17—Sn—C1114.57 (9)
C15—C14—H16119.9
S—C1—C2—C370.6 (3)C26—C27—C28—C230.9 (5)
Sn—C1—C2—C352.3 (3)C24—C23—C28—C271.4 (4)
C1—C2—C3—O71.8 (3)Sn—C23—C28—C27177.6 (2)
C10—C5—C6—C71.0 (4)C2—C3—O—C4176.5 (2)
S—C5—C6—C7176.4 (2)C6—C5—S—C112.6 (2)
C5—C6—C7—C80.1 (4)C10—C5—S—C1170.0 (2)
C6—C7—C8—C90.8 (5)C2—C1—S—C568.1 (2)
C7—C8—C9—C100.4 (5)Sn—C1—S—C5162.64 (11)
C8—C9—C10—C50.7 (5)C28—C23—Sn—C1174.8 (2)
C6—C5—C10—C91.4 (4)C24—C23—Sn—C11106.2 (2)
S—C5—C10—C9176.2 (2)C28—C23—Sn—C17171.1 (2)
C16—C11—C12—C130.1 (4)C24—C23—Sn—C177.9 (2)
Sn—C11—C12—C13179.0 (2)C28—C23—Sn—C139.9 (2)
C11—C12—C13—C140.4 (5)C24—C23—Sn—C1139.1 (2)
C12—C13—C14—C150.2 (6)C16—C11—Sn—C2337.7 (2)
C13—C14—C15—C160.3 (6)C12—C11—Sn—C23141.3 (2)
C14—C15—C16—C110.7 (6)C16—C11—Sn—C1780.3 (2)
C12—C11—C16—C150.5 (5)C12—C11—Sn—C17100.7 (2)
Sn—C11—C16—C15178.5 (3)C16—C11—Sn—C1159.1 (2)
C22—C17—C18—C190.2 (4)C12—C11—Sn—C119.8 (2)
Sn—C17—C18—C19178.21 (18)C22—C17—Sn—C23101.8 (2)
C17—C18—C19—C200.6 (4)C18—C17—Sn—C2379.8 (2)
C18—C19—C20—C210.1 (4)C22—C17—Sn—C1114.0 (2)
C19—C20—C21—C220.9 (5)C18—C17—Sn—C11164.4 (2)
C20—C21—C22—C171.4 (5)C22—C17—Sn—C1127.14 (19)
C18—C17—C22—C210.8 (4)C18—C17—Sn—C151.2 (2)
Sn—C17—C22—C21179.4 (2)C2—C1—Sn—C2373.5 (2)
C28—C23—C24—C250.7 (4)S—C1—Sn—C2352.99 (14)
Sn—C23—C24—C25178.3 (2)C2—C1—Sn—C11169.59 (19)
C23—C24—C25—C260.4 (5)S—C1—Sn—C1163.88 (13)
C24—C25—C26—C270.9 (5)C2—C1—Sn—C1755.8 (2)
C25—C26—C27—C280.3 (5)S—C1—Sn—C17177.69 (10)
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) xy+1/3, x1/3, z+2/3.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C10H13OS)]·0.17C6H6
Mr544.27
Crystal system, space groupTrigonal, R3
Temperature (K)220
a, c (Å)35.338 (3), 10.5660 (8)
V3)11427.1 (16)
Z18
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.46 × 0.31 × 0.15
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(IPDS Software; Stoe & Cie, 1999)
Tmin, Tmax0.648, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
22832, 4905, 4008
Rint0.061
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 0.99
No. of reflections4905
No. of parameters288
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.53

Computer programs: IPDS EXPOSE (Stoe & Cie, 1999), IPDS INTEGRATE (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Selected bond lengths (Å) top
C1—Sn2.196 (2)C17—Sn2.153 (2)
C5—S1.774 (3)C23—Sn2.147 (2)
C11—Sn2.150 (2)
 

Acknowledgements

Financial support from the Graduiertenförderung des Landes Sachsen-Anhalt is gratefully acknowledged.

References

First citationBlock, M., Linnert, M., Gomez-Ruiz, S. & Steinborn, D. (2009). J. Organomet. Chem. 694, 3353–3361.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKauffmann, T., Kriegesmann, R. & Hamsen, A. (1982). Chem. Ber. 115, 1818–1824.  CrossRef CAS Web of Science Google Scholar
First citationLinnert, M., Wagner, C., Merzweiler, K. & Steinborn, D. (2008). Z. Anorg. Allg. Chem. 634, 43–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS EXPOSE and IPDS INTEGRATE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds