organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,4,4-Tetra-tert-butyl-1,4-di­chloro-2,2,3,3-tetra­phenyl­tetra­silane

aDepartment of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: kyushin@chem-bio.gunma-u.ac.jp

(Received 20 December 2011; accepted 7 January 2012; online 18 January 2012)

The title compound, C40H56Cl2Si4, was synthesized by the coupling of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyl­disilane with lithium. The asymmetric unit contains one half-mol­ecule, which is completed by an inversion centre. In the mol­ecule, the tetra­silane skeleton adopts a perfect anti conformation and the Si—Si bonds [2.4355 (5) and 2.4328 (7) Å] are longer than the standard Si—Si bond length (2.34 Å). The Si—Si—Si angle [116.09 (2)°] is larger than the tetra­hedral bond angle (109.5°). These long bond lengths and the wide angle are favorable for reducing the steric hindrance among the tert-butyl and the phenyl groups. The dihedral angle between the phenyl rings in the asymmetric unit is 37.36 (8)°.

Related literature

For details of Wurtz-type reactions for formation of silicon–silicon bonds, see: Burkhard (1949[Burkhard, C. A. (1949). J. Am. Chem. Soc. 71, 963-964.]); Gilman & Tomasi (1963[Gilman, H. & Tomasi, R. A. (1963). J. Org. Chem. 28, 1651-1653.]); Stolberg (1963[Stolberg, U. G. (1963). Angew. Chem. Int. Ed. Engl. 2, 150-151.]); Laguerre et al. (1978[Laguerre, M., Dunogues, J. & Calas, R. (1978). J. Chem. Soc. Chem. Commun. p. 272.]); Herman et al. (1985[Herman, A., Dreczewski, B. & Wojnowski, W. (1985). Chem. Phys. 98, 475-481.]); Watanabe et al. (1988[Watanabe, H., Akutsu, Y., Shinohara, A., Shinohara, S., Yamaguchi, Y., Ohta, A., Onozuka, M. & Nagai, Y. (1988). Chem. Lett. pp. 1883-1886.]). For related structures of oligosilanes with anti conformations, see: Baumeister et al. (1997[Baumeister, U., Schenzel, K., Zink, R. & Hassler, K. (1997). J. Organomet. Chem. 543, 117-124.]); Michl & West (2000[Michl, J. & West, R. (2000). Acc. Chem. Res. 33, 821-823.]); Tsuji et al. (2004[Tsuji, H., Fukazawa, A., Yamaguchi, S., Toshimitsu, A. & Tamao, K. (2004). Organometallics, 23, 3375-3377.]); Fukazawa et al. (2006[Fukazawa, A., Tsuji, H. & Tamao, K. (2006). J. Am. Chem. Soc. 128, 6800-6801.]); Haga et al. (2008[Haga, R., Burschka, C. & Tacke, R. (2008). Organometallics, 27, 4395-4400.]).

[Scheme 1]

Experimental

Crystal data
  • C40H56Cl2Si4

  • Mr = 720.11

  • Monoclinic, P 21 /n

  • a = 9.6981 (8) Å

  • b = 15.3893 (11) Å

  • c = 13.8546 (11) Å

  • β = 105.7717 (7)°

  • V = 1989.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 153 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku RAXIS-IV imaging plate diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.913, Tmax = 0.970

  • 12290 measured reflections

  • 4895 independent reflections

  • 4826 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.10

  • 4895 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2003[Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

Wurtz-type reactions are the most general method of forming silicon–silicon bonds. Monochlorinated silanes such as chlorotrimethylsilane give disilanes by Wurtz-type reactions. When chlorosilanes containing two chlorine atoms are subjected to the Wurtz-type reactions, the reactions proceed successively to give polymerization and/or cyclization products as shown in Fig. 1. For example, the reaction of dichlorodimethylsilane with sodium gives poly(dimethylsilylene) (Burkhard, 1949), while the reaction of dichlorodimethylsilane with lithium in the presence of a catalytic amount of triphenylsilyllithium (Gilman et al., 1963) gives dodecamethylcyclohexasilane. Also, the reaction of dichlorodimethylsilane with sodium–potassium alloy (Stolberg, 1963) or lithium (Laguerre et al., 1978) gives dodecamethylcyclohexasilane. Similarly, the Wurtz-type reactions of 1,2-dichlorodisilanes have been reported to give polysilanes or cyclic oligosilanes, depending on reaction conditions (Herman et al., 1985; Watanabe et al., 1988).

If the Wurtz-type reactions of 1,2-dichlorodisilanes could be stopped at the stage of dimerization, it would be a convenient synthetic method for 1,4-dichlorotetrasilanes. To realise this method, one chlorosilyl moiety of 1,2-dichlorodisilane must be reactive in the Wurtz-type reaction, and the other must be less reactive. In this case, the reactive chlorosilyl moieties are coupled preferentially to afford 1,4-dichlorotetrasilane which does not react further as shown in Fig. 2. We report herein the synthesis of 1,4-dichlorotetrasilane by using 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane. In this compound, the chlorodiphenylsilyl moiety is expected to be more reactive than the di-tert-butylchlorosilyl moiety. We also report the X-ray crystal analysis of the resulting 1,4-dichlorotetrasilane.

The reaction of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane with lithium (1.6 eq.) in tetrahydrofuran (THF) gave 1,1,4,4-tetra-tert-butyl-1,4-dichloro-2,2,3,3-tetraphenyltetrasilane 1 in 33% yield (Fig. 3). In this reaction, 2,2,3,3-tetra-tert-butyl-1,4-dichloro-1,1,4,4-tetraphenyltetrasilane 2 was not formed, indicating that the more reactive chlorodiphenylsilyl moieties are coupled predominantly. Unfortunately, the structure of 1 could not be determined by spectral data because compounds 1 and 2 are expected to show similar spectra. To distinguish these structures, we carried out the X-ray crystal analysis of 1.

The molecular structure of 1 is shown in Fig. 4. The tetrasilane skeleton of 1 adopts a perfect anti structure with an Si1—Si2—Si2i—Si1i [symmetry code: (i) –x + 1, –y, –z + 1] torsion angle of 180.0° (Michl & West, 2000). The perfect or nearly perfect anti structures have rarely been reported in a few oligosilanes (Baumeister et al., 1997; Tsuji et al., 2004; Fukazawa et al., 2006; Haga et al., 2008). The silicon–silicon bonds [2.4355 (5) and 2.4328 (7) Å] are longer than the standard silicon–silicon bond (2.34 Å). The Si1—Si2—Si2i bond angle [116.09 (2)°] is larger than the tetrahedral bond angle (109.5°). The long silicon–silicon bonds and the wide silicon–silicon–silicon bond angle are favorable for reducing the steric hindrance among the tert-butyl and phenyl groups. Four phenyl groups have almost perpendicular orientation to the tetrasilane plane to avoid the steric hindrance with the terminal tert-butyl groups.

Related literature top

For details of Wurtz-type reactions for formation of silicon–silicon bonds, see: Burkhard (1949); Gilman & Tomasi (1963); Stolberg (1963); Laguerre et al. (1978); Herman et al. (1985); Watanabe et al. (1988). For related structures of oligosilanes with anti structures, see: Baumeister et al. (1997); Michl & West (2000); Tsuji et al. (2004); Fukazawa et al. (2006); Haga et al. (2008).

Experimental top

A mixture of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane (0.248 g, 0.627 mmol) and lithium (6.8 mg, 0.98 mmol) in THF (3 ml) was stirred at room temperature for 1 day. Ethanol (ca. 1 ml) was added to the reaction mixture, and the solvent was removed under reduced pressure. The residue was dissolved in chloroform and passed through a short column of silica gel. The filtrate was evaporated, and the residue was separated by column chromatography (silica gel, hexane–chloroform (1:1)) to give 1 (0.075 g, 33%) as colorless crystals. Single crystals were obtained from ethanol–THF (ca. 1:1) by slow evaporation.

1. Mp: 244–247 °C. 1H NMR (CDCl3): δ 1.01 (s, 36H), 7.45 (t, 8H, J = 7.6 Hz), 7.55 (t, 4H, J = 7.6 Hz), 7.94 (d, 8H, J = 7.6 Hz). 13C NMR (CDCl3): δ 26.1, 29.5, 127.4, 129.1, 134.0, 138.5. 29Si NMR (CDCl3): δ –32.0, 35.3.

Refinement top

All hydrogen atoms were generated at calculated positions and refined as riding atoms, with C—H = 0.95 (phenyl) or 0.98 (methyl) Å and Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2003); cell refinement: CrystalClear (Rigaku, 2003); data reduction: CrystalClear (Rigaku, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Wurtz-type reactions of trialkylchlorosilane and dialkyldichlorosilane.
[Figure 2] Fig. 2. Synthesis of 1,4-dichlorotetrasilane by the Wurtz-type reaction of 1,2-dichlorodisilane.
[Figure 3] Fig. 3. Synthesis of 1.
[Figure 4] Fig. 4. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. [Symmetry code: (i) –x + 1, –y, –z + 1.]
1,1,4,4-Tetra-tert-butyl-1,4-dichloro-2,2,3,3-tetraphenyltetrasilane top
Crystal data top
C40H56Cl2Si4F(000) = 772
Mr = 720.11Dx = 1.202 Mg m3
Monoclinic, P21/nMelting point = 517–520 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.6981 (8) ÅCell parameters from 9597 reflections
b = 15.3893 (11) Åθ = 1.3–28.3°
c = 13.8546 (11) ŵ = 0.31 mm1
β = 105.7717 (7)°T = 153 K
V = 1989.9 (3) Å3Prism, colourless
Z = 20.30 × 0.10 × 0.10 mm
Data collection top
Rigaku RAXIS-IV imaging plate
diffractometer
4895 independent reflections
Radiation source: rotating anode4826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.00 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 1212
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2020
Tmin = 0.913, Tmax = 0.970l = 1818
12290 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.7041P]
where P = (Fo2 + 2Fc2)/3
4895 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C40H56Cl2Si4V = 1989.9 (3) Å3
Mr = 720.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6981 (8) ŵ = 0.31 mm1
b = 15.3893 (11) ÅT = 153 K
c = 13.8546 (11) Å0.30 × 0.10 × 0.10 mm
β = 105.7717 (7)°
Data collection top
Rigaku RAXIS-IV imaging plate
diffractometer
4895 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4826 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.970Rint = 0.020
12290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
4895 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Experimental. IR (KBr): 3080, 3050, 2980, 2950, 2940, 2890, 2850, 1470, 1430, 1390, 1370, 1360, 1180, 1090, 1010, 810, 730, 700 cm–1. MS (EI, 70 eV): m/z 541 (M+–177, 100), 359 (24), 324 (69), 267 (31), 259 (42), 197 (50), 183 (26), 135 (46).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.31115 (4)0.00675 (2)0.27448 (3)0.01114 (9)
Si20.52023 (4)0.00985 (2)0.41781 (3)0.00975 (9)
Cl10.23186 (4)0.12785 (2)0.30352 (3)0.01879 (9)
C10.37002 (17)0.02227 (11)0.15322 (11)0.0199 (3)
C20.4726 (2)0.05206 (14)0.14543 (13)0.0315 (4)
H10.42300.10780.14310.047*
H20.55630.05080.20400.047*
H30.50360.04490.08430.047*
C30.24115 (19)0.02135 (13)0.05901 (12)0.0274 (4)
H40.27490.03070.00070.041*
H50.17420.06770.06400.041*
H60.19240.03490.05390.041*
C40.4457 (2)0.11019 (13)0.15219 (13)0.0296 (4)
H70.53160.11290.20910.044*
H80.38050.15750.15740.044*
H90.47310.11600.08940.044*
C50.14973 (15)0.07002 (9)0.25896 (11)0.0165 (3)
C60.16775 (19)0.15608 (11)0.20623 (15)0.0306 (4)
H100.26180.18120.23860.046*
H110.16040.14470.13540.046*
H120.09240.19690.21130.046*
C70.13114 (18)0.09028 (13)0.36307 (13)0.0288 (4)
H130.04490.12560.35590.043*
H140.12170.03580.39740.043*
H150.21500.12230.40240.043*
C80.00900 (16)0.02761 (11)0.19730 (12)0.0216 (3)
H160.07120.06730.19390.032*
H170.01580.01530.12930.032*
H180.00690.02670.22960.032*
C90.63923 (14)0.08247 (9)0.39841 (10)0.0129 (3)
C100.60184 (15)0.16802 (9)0.41542 (11)0.0154 (3)
H190.51740.17800.43600.018*
C110.68493 (17)0.23859 (10)0.40297 (13)0.0224 (3)
H200.65800.29580.41610.027*
C120.80733 (18)0.22523 (11)0.37132 (14)0.0283 (4)
H210.86440.27320.36250.034*
C130.84559 (18)0.14169 (12)0.35275 (14)0.0269 (4)
H220.92930.13250.33100.032*
C140.76306 (16)0.07092 (10)0.36547 (11)0.0183 (3)
H230.79070.01400.35170.022*
C150.61049 (15)0.11866 (9)0.41486 (10)0.0125 (3)
C160.75912 (16)0.13158 (10)0.44964 (12)0.0189 (3)
H240.81970.08330.47390.023*
C170.81957 (17)0.21366 (11)0.44931 (13)0.0242 (3)
H250.92060.22040.47170.029*
C180.73361 (19)0.28541 (11)0.41658 (13)0.0247 (3)
H260.77530.34130.41680.030*
C190.58640 (19)0.27512 (11)0.38349 (13)0.0255 (3)
H270.52640.32410.36170.031*
C200.52687 (16)0.19285 (10)0.38224 (12)0.0195 (3)
H280.42580.18660.35840.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00980 (17)0.01148 (18)0.01079 (17)0.00034 (13)0.00048 (13)0.00035 (13)
Si20.00847 (17)0.00997 (17)0.01055 (17)0.00025 (12)0.00215 (13)0.00022 (12)
Cl10.01666 (17)0.01261 (16)0.02527 (19)0.00270 (12)0.00259 (13)0.00031 (12)
C10.0185 (7)0.0299 (8)0.0111 (6)0.0007 (6)0.0036 (5)0.0007 (6)
C20.0296 (9)0.0477 (11)0.0194 (8)0.0128 (8)0.0104 (7)0.0017 (7)
C30.0251 (8)0.0420 (10)0.0124 (7)0.0017 (7)0.0005 (6)0.0021 (7)
C40.0291 (9)0.0424 (10)0.0174 (7)0.0104 (8)0.0064 (6)0.0062 (7)
C50.0122 (6)0.0142 (6)0.0187 (7)0.0024 (5)0.0033 (5)0.0010 (5)
C60.0233 (8)0.0164 (7)0.0421 (10)0.0018 (6)0.0079 (7)0.0074 (7)
C70.0211 (8)0.0375 (10)0.0238 (8)0.0132 (7)0.0011 (6)0.0097 (7)
C80.0134 (7)0.0223 (7)0.0246 (8)0.0004 (6)0.0024 (6)0.0012 (6)
C90.0115 (6)0.0152 (6)0.0111 (6)0.0019 (5)0.0015 (5)0.0014 (5)
C100.0136 (6)0.0152 (6)0.0158 (6)0.0001 (5)0.0015 (5)0.0011 (5)
C110.0200 (7)0.0154 (7)0.0276 (8)0.0031 (6)0.0007 (6)0.0031 (6)
C120.0208 (8)0.0245 (8)0.0385 (10)0.0106 (6)0.0064 (7)0.0077 (7)
C130.0175 (7)0.0319 (9)0.0344 (9)0.0043 (7)0.0123 (7)0.0045 (7)
C140.0159 (6)0.0198 (7)0.0210 (7)0.0004 (5)0.0081 (5)0.0007 (5)
C150.0131 (6)0.0131 (6)0.0116 (6)0.0027 (5)0.0037 (5)0.0003 (5)
C160.0146 (7)0.0167 (7)0.0242 (7)0.0011 (5)0.0033 (5)0.0001 (6)
C170.0153 (7)0.0240 (8)0.0328 (9)0.0089 (6)0.0057 (6)0.0044 (6)
C180.0277 (8)0.0176 (7)0.0298 (8)0.0100 (6)0.0095 (7)0.0009 (6)
C190.0255 (8)0.0161 (7)0.0318 (9)0.0001 (6)0.0027 (7)0.0076 (6)
C200.0150 (6)0.0172 (7)0.0235 (7)0.0018 (5)0.0001 (5)0.0041 (6)
Geometric parameters (Å, º) top
Si1—C51.9261 (15)C7—H150.9800
Si1—C11.9306 (15)C8—H160.9800
Si1—Cl12.0963 (5)C8—H170.9800
Si1—Si22.4355 (5)C8—H180.9800
Si2—C151.8951 (14)C9—C101.402 (2)
Si2—C91.8950 (14)C9—C141.4072 (19)
Si2—Si2i2.4328 (7)C10—C111.391 (2)
C1—C31.542 (2)C10—H190.9500
C1—C21.538 (2)C11—C121.388 (2)
C1—C41.541 (2)C11—H200.9500
C2—H10.9800C12—C131.381 (3)
C2—H20.9800C12—H210.9500
C2—H30.9800C13—C141.391 (2)
C3—H40.9800C13—H220.9500
C3—H50.9800C14—H230.9500
C3—H60.9800C15—C201.402 (2)
C4—H70.9800C15—C161.4043 (19)
C4—H80.9800C16—C171.393 (2)
C4—H90.9800C16—H240.9500
C5—C71.533 (2)C17—C181.384 (2)
C5—C61.545 (2)C17—H250.9500
C5—C81.544 (2)C18—C191.385 (2)
C6—H100.9800C18—H260.9500
C6—H110.9800C19—C201.390 (2)
C6—H120.9800C19—H270.9500
C7—H130.9800C20—H280.9500
C7—H140.9800
C5—Si1—C1113.73 (7)C5—C7—H13109.5
C5—Si1—Cl1103.73 (5)C5—C7—H14109.5
C1—Si1—Cl1105.53 (5)H13—C7—H14109.5
C5—Si1—Si2119.87 (5)C5—C7—H15109.5
C1—Si1—Si2110.17 (5)H13—C7—H15109.5
Cl1—Si1—Si2101.79 (2)H14—C7—H15109.5
C15—Si2—C9110.90 (6)C5—C8—H16109.5
C15—Si2—Si2i108.86 (5)C5—C8—H17109.5
C9—Si2—Si2i107.38 (5)H16—C8—H17109.5
C15—Si2—Si1111.23 (5)C5—C8—H18109.5
C9—Si2—Si1102.12 (4)H16—C8—H18109.5
Si2i—Si2—Si1116.09 (2)H17—C8—H18109.5
C3—C1—C2108.93 (14)C10—C9—C14117.10 (13)
C3—C1—C4106.18 (14)C10—C9—Si2119.00 (10)
C2—C1—C4109.48 (14)C14—C9—Si2123.89 (11)
C3—C1—Si1111.84 (11)C11—C10—C9121.82 (14)
C2—C1—Si1108.59 (11)C11—C10—H19119.1
C4—C1—Si1111.77 (11)C9—C10—H19119.1
C1—C2—H1109.5C12—C11—C10119.85 (15)
C1—C2—H2109.5C12—C11—H20120.1
H1—C2—H2109.5C10—C11—H20120.1
C1—C2—H3109.5C13—C12—C11119.52 (15)
H1—C2—H3109.5C13—C12—H21120.2
H2—C2—H3109.5C11—C12—H21120.2
C1—C3—H4109.5C12—C13—C14120.81 (15)
C1—C3—H5109.5C12—C13—H22119.6
H4—C3—H5109.5C14—C13—H22119.6
C1—C3—H6109.5C13—C14—C9120.89 (15)
H4—C3—H6109.5C13—C14—H23119.6
H5—C3—H6109.5C9—C14—H23119.6
C1—C4—H7109.5C20—C15—C16116.43 (13)
C1—C4—H8109.5C20—C15—Si2119.76 (10)
H7—C4—H8109.5C16—C15—Si2123.69 (11)
C1—C4—H9109.5C17—C16—C15121.39 (14)
H7—C4—H9109.5C17—C16—H24119.3
H8—C4—H9109.5C15—C16—H24119.3
C7—C5—C6109.13 (14)C18—C17—C16120.54 (14)
C7—C5—C8107.10 (13)C18—C17—H25119.7
C6—C5—C8107.30 (12)C16—C17—H25119.7
C7—C5—Si1108.63 (10)C19—C18—C17119.50 (14)
C6—C5—Si1112.68 (11)C19—C18—H26120.2
C8—C5—Si1111.83 (10)C17—C18—H26120.2
C5—C6—H10109.5C18—C19—C20119.71 (15)
C5—C6—H11109.5C18—C19—H27120.1
H10—C6—H11109.5C20—C19—H27120.1
C5—C6—H12109.5C19—C20—C15122.41 (14)
H10—C6—H12109.5C19—C20—H28118.8
H11—C6—H12109.5C15—C20—H28118.8
C5—Si1—Si2—C1563.66 (7)Si2i—Si2—C9—C1050.23 (12)
C1—Si1—Si2—C1571.20 (7)Si1—Si2—C9—C1072.35 (11)
Cl1—Si1—Si2—C15177.20 (5)C15—Si2—C9—C1412.38 (14)
C5—Si1—Si2—C9177.99 (7)Si2i—Si2—C9—C14131.21 (11)
C1—Si1—Si2—C947.15 (7)Si1—Si2—C9—C14106.21 (12)
Cl1—Si1—Si2—C964.44 (5)C14—C9—C10—C111.6 (2)
C5—Si1—Si2—Si2i61.54 (6)Si2—C9—C10—C11179.71 (12)
C1—Si1—Si2—Si2i163.60 (6)C9—C10—C11—C121.1 (2)
Cl1—Si1—Si2—Si2i52.00 (3)C10—C11—C12—C130.2 (3)
C5—Si1—C1—C334.92 (14)C11—C12—C13—C140.1 (3)
Cl1—Si1—C1—C378.12 (12)C12—C13—C14—C90.6 (3)
Si2—Si1—C1—C3172.74 (11)C10—C9—C14—C131.4 (2)
C5—Si1—C1—C285.31 (13)Si2—C9—C14—C13179.96 (13)
Cl1—Si1—C1—C2161.66 (11)C9—Si2—C15—C20150.92 (11)
Si2—Si1—C1—C252.51 (12)Si2i—Si2—C15—C2091.15 (12)
C5—Si1—C1—C4153.81 (11)Si1—Si2—C15—C2038.00 (13)
Cl1—Si1—C1—C440.78 (12)C9—Si2—C15—C1633.11 (14)
Si2—Si1—C1—C468.36 (12)Si2i—Si2—C15—C1684.82 (12)
C1—Si1—C5—C7169.63 (11)Si1—Si2—C15—C16146.04 (11)
Cl1—Si1—C5—C776.26 (11)C20—C15—C16—C171.4 (2)
Si2—Si1—C5—C736.25 (13)Si2—C15—C16—C17177.51 (12)
C1—Si1—C5—C648.58 (13)C15—C16—C17—C181.5 (3)
Cl1—Si1—C5—C6162.69 (10)C16—C17—C18—C190.3 (3)
Si2—Si1—C5—C684.80 (12)C17—C18—C19—C200.9 (3)
C1—Si1—C5—C872.38 (12)C18—C19—C20—C150.9 (3)
Cl1—Si1—C5—C841.73 (11)C16—C15—C20—C190.2 (2)
Si2—Si1—C5—C8154.24 (9)Si2—C15—C20—C19176.46 (13)
C15—Si2—C9—C10169.06 (10)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC40H56Cl2Si4
Mr720.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)9.6981 (8), 15.3893 (11), 13.8546 (11)
β (°) 105.7717 (7)
V3)1989.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku RAXIS-IV imaging plate
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.913, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12290, 4895, 4826
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.10
No. of reflections4895
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: CrystalClear (Rigaku, 2003), SIR2004 (Burla et al., 2005), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).

 

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science. This work was also supported by the Element Innovation Project of Gunma University.

References

First citationBaumeister, U., Schenzel, K., Zink, R. & Hassler, K. (1997). J. Organomet. Chem. 543, 117–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurkhard, C. A. (1949). J. Am. Chem. Soc. 71, 963–964.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFukazawa, A., Tsuji, H. & Tamao, K. (2006). J. Am. Chem. Soc. 128, 6800–6801.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGilman, H. & Tomasi, R. A. (1963). J. Org. Chem. 28, 1651–1653.  CrossRef CAS Web of Science Google Scholar
First citationHaga, R., Burschka, C. & Tacke, R. (2008). Organometallics, 27, 4395–4400.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerman, A., Dreczewski, B. & Wojnowski, W. (1985). Chem. Phys. 98, 475–481.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationLaguerre, M., Dunogues, J. & Calas, R. (1978). J. Chem. Soc. Chem. Commun. p. 272.  CrossRef Google Scholar
First citationMichl, J. & West, R. (2000). Acc. Chem. Res. 33, 821–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStolberg, U. G. (1963). Angew. Chem. Int. Ed. Engl. 2, 150–151.  Google Scholar
First citationTsuji, H., Fukazawa, A., Yamaguchi, S., Toshimitsu, A. & Tamao, K. (2004). Organometallics, 23, 3375–3377.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatanabe, H., Akutsu, Y., Shinohara, A., Shinohara, S., Yamaguchi, Y., Ohta, A., Onozuka, M. & Nagai, Y. (1988). Chem. Lett. pp. 1883–1886.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds