organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(2-methyl­phen­yl)-3-nitro­formazan

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, bDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa, and cResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za

(Received 12 December 2011; accepted 10 January 2012; online 18 January 2012)

In the title compound, C15H15N5O2, the nitro O atoms are disordered over two sets of sites with an occupancy ratio of 0.75 (4):0.25 (4). Amine–imine tautomerism is observed in the formazan group. This was evident from the similar C—N bond distances in the formazan [1.319 (2) and 1.332 (3) Å], as well as the distribution of the imine proton in the Fourier difference map which refined to a 0.53 (3):0.47 (3) ratio. C—H⋯O and ππ inter­actions [centroid–centroid distances = 3.4813 (1) and 3.3976 (1) Å] are observed in the crystal packing.

Related literature

For related structures of nitro­formazan derivatives, see: Gilroy et al. (2008[Gilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279-1286.]); Mito et al. (1997[Mito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517-9524.]) and for a related dithizone structure, see: Laing (1977[Laing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248-1252.]). For the synthesis and chemistry of nitro­formazans, see: Pelkis et al. (1957[Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190-2194.]); Irving (1977[Irving, H. M. N. H. (1977). Dithizone, Analytical Sciences Monographs No. 5. London: The Chemical Society.]). For DFT and electrochemistry studies of dithizones, see: Von Eschwege & Swarts (2010[Von Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727-1733.]); Von Eschwege et al. (2011[Von Eschwege, K. G., Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A, doi:10.1021/jp208212e.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N5O2

  • Mr = 297.32

  • Orthorhombic, P b c a

  • a = 14.6525 (3) Å

  • b = 10.2523 (3) Å

  • c = 19.2425 (4) Å

  • V = 2890.64 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.43 × 0.19 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.982

  • 24031 measured reflections

  • 3619 independent reflections

  • 2487 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.180

  • S = 1.05

  • 3619 reflections

  • 221 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1Ai 0.95 2.42 3.239 (9) 145
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During synthesis of the versatile trace metal analysis dithizone reagent, aniline is first diazotized and then treated with nitromethane to form the bright orange-red nitroformazan product (Pelkis et al., 1957). Ammonia and hydrogen sulfide gas is used to substitute the nitro group with sulfur towards the formation of dithizone, the chemistry of which is extensively described by Irving, 1977. Single crystal X-ray structures of nitroformazan derivatives were determined by Gilroy et al., 2008; Mito et al.,1997, and the dithizone structure by Laing, 1977, while we performed extensive DFT (Von Eschwege et al., 2011) and electrochemistry studies (Von Eschwege & Swarts, 2010) on the free ligand. We recently embarked on a study during which we synthesized a series of electronically altered dithizones for the purpose of investigating its altered redox and structural properties. During this process orange 1,5-bis(2-methylphenyl)-3-nitroformazan crystals suitable for X-ray structure analysis were grown from an acetone solution overlaid with n-hexane.

The title compound (Fig. 1) crystallises with the 2-methylphenyl moieties in different orientations, i.e. C1—C7 and C9—C15 have dihedral angles of of 12.64 (9)° and 3.27 (9)° respectively with the N—N C—NN backbone. The preferred orientations are probably due to the observed C—H···O interactions as well as the π-stacking of 2-methylphenyl aromatic rings (Tables 1 and 2, Fig. 2) with neighbouring N—NC—NN conjugates creating a zigzag packing motif (Fig. 3).

The structure showed large thermal vibrations at the NO2 moiety and was treated for disorder. From the Fourier difference map the imine hydrogen was also detected as being disordered over two nitrogen atoms. Details of these can be found in the refinement section.

Related literature top

For related structures of nitroformazan derivatives, see: Gilroy et al. (2008); Mito et al. (1997) and for a related dithizone structure, see: Laing (1977). For the synthesis and chemistry of nitroformazans, see: Pelkis et al. (1957); Irving (1977). For DFT and electrochemistry studies of dithizones, see: Von Eschwege & Swarts (2010); Von Eschwege et al. (2011).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The ortho-methyl derivative of nitroformazan was prepared according to the procedure reported by Pelkis et al., 1957.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with 0.98 Å (methyl), 0.95 Å (aromatic) and C—H = 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The amine hydrogen atom was refined as disordered over N1 and N4. The occupancy was connected to a free variable to add to unity. This refined to a 0.53 (3):0.47 (3) ratio. The NO2 moiety showed large displacement ellipsoids on O1 and O2. These were also treated for disorder. Geometrical (SADI) and displacement (SIMU and DELU) restraints were applied. A free variable, to refine the disordered sites to unity, gave a distribution of 0.75 (4):0.25 (4).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with labelling and displacement ellipsoids drawn at a 50% probability level. Hydrogen atoms and minor components of disorders not shown for clarity.
[Figure 2] Fig. 2. Partial packing diagram of title compound indicating the π···π interactions.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the a axis illustrating the zigzag packing motif.
2-[(2-methylphenyl)amino]-3-[(2-methylphenyl)imino]-1,1-dioxoguanidine top
Crystal data top
C15H15N5O2F(000) = 1248
Mr = 297.32Dx = 1.366 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8384 reflections
a = 14.6525 (3) Åθ = 2.7–28.3°
b = 10.2523 (3) ŵ = 0.10 mm1
c = 19.2425 (4) ÅT = 200 K
V = 2890.64 (12) Å3Needle, red
Z = 80.43 × 0.19 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3619 independent reflections
Graphite monochromator2487 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.028
ω and ϕ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.960, Tmax = 0.982k = 1213
24031 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.070P)2 + 1.8629P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.51 e Å3
48 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H15N5O2V = 2890.64 (12) Å3
Mr = 297.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6525 (3) ŵ = 0.10 mm1
b = 10.2523 (3) ÅT = 200 K
c = 19.2425 (4) Å0.43 × 0.19 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2487 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.982Rint = 0.028
24031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06048 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
3619 reflectionsΔρmin = 0.21 e Å3
221 parameters
Special details top

Experimental. The intensity data was collected on a Bruker APEX-II CCD diffractometer using an exposure time of 60 s/frame. A total of 1062 frames were collected with a frame width of 0.5° covering up to θ = 28.40° with 99.6% completeness accomplished.

Analytical data: M.p. 154 °C. λmax (dichloromethane) 319, 440 nm. 1H (600 MHz, CDCl3) 14.32 (1 H, 1 × s, 1 × NH), 2.58 (6 H, 1 × s, 2 × CH3), 7.92 – 7.29 (8 H, 2 × m, 2 × C6H4)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.26169 (12)0.01378 (16)0.07679 (8)0.0441 (4)
HN10.22520.06630.09990.053*0.53 (3)
N20.34854 (12)0.01558 (17)0.08281 (8)0.0458 (4)
N30.35427 (11)0.19544 (16)0.16744 (8)0.0408 (4)
N40.26631 (10)0.21162 (16)0.17126 (8)0.0385 (4)
HN40.22830.16480.14620.046*0.47 (3)
N50.48561 (13)0.0936 (2)0.12737 (11)0.0580 (5)
O1A0.5222 (5)0.0056 (8)0.1083 (9)0.094 (3)0.75 (4)
O2A0.5302 (5)0.1873 (10)0.1454 (10)0.087 (3)0.75 (4)
O1B0.512 (2)0.012 (3)0.087 (2)0.107 (8)0.25 (4)
O2B0.5218 (19)0.155 (4)0.172 (2)0.097 (6)0.25 (4)
C10.07297 (15)0.0431 (3)0.07535 (13)0.0596 (6)
H1A0.0920.05570.12370.089*
H1B0.01180.07970.06870.089*
H1C0.0720.05030.06460.089*
C20.13763 (15)0.1095 (2)0.02891 (10)0.0485 (5)
C30.10754 (17)0.2092 (2)0.01616 (11)0.0549 (6)
H30.04480.23270.01620.066*
C40.16569 (18)0.2723 (2)0.05938 (12)0.0590 (6)
H40.14360.33920.08910.071*
C50.25748 (19)0.2394 (2)0.06022 (12)0.0629 (6)
H50.29780.28220.09150.075*
C60.28997 (16)0.1465 (2)0.01666 (11)0.0543 (5)
H60.3530.12510.01690.065*
C70.22993 (15)0.0819 (2)0.02888 (10)0.0464 (5)
C80.38492 (13)0.1033 (2)0.12568 (9)0.0425 (4)
C90.23522 (12)0.30827 (18)0.21773 (9)0.0375 (4)
C100.29585 (14)0.3870 (2)0.25478 (10)0.0448 (5)
H100.35980.37510.24960.054*
C110.26305 (16)0.4823 (2)0.29902 (10)0.0501 (5)
H110.30430.53670.32380.06*
C120.16987 (16)0.4981 (2)0.30707 (11)0.0510 (5)
H120.14690.56320.33750.061*
C130.11046 (15)0.4192 (2)0.27091 (11)0.0511 (5)
H130.04670.4310.27710.061*
C140.14087 (13)0.3228 (2)0.22551 (10)0.0429 (4)
C150.07500 (14)0.2388 (3)0.18674 (14)0.0619 (6)
H15A0.01250.26190.20010.093*
H15B0.08640.1470.1980.093*
H15C0.08290.25230.13670.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0552 (10)0.0391 (9)0.0381 (8)0.0027 (7)0.0009 (7)0.0037 (7)
N20.0527 (9)0.0440 (9)0.0405 (8)0.0019 (8)0.0020 (7)0.0042 (7)
N30.0402 (8)0.0431 (9)0.0392 (8)0.0031 (7)0.0009 (6)0.0042 (7)
N40.0381 (8)0.0405 (9)0.0369 (7)0.0013 (6)0.0012 (6)0.0042 (6)
N50.0436 (10)0.0637 (13)0.0666 (12)0.0095 (9)0.0059 (9)0.0043 (10)
O1A0.045 (2)0.070 (3)0.168 (7)0.0139 (19)0.001 (3)0.030 (3)
O2A0.0410 (16)0.094 (4)0.125 (6)0.0035 (18)0.004 (3)0.048 (4)
O1B0.085 (11)0.124 (13)0.112 (14)0.049 (10)0.039 (9)0.025 (9)
O2B0.049 (7)0.141 (14)0.101 (12)0.003 (8)0.011 (8)0.027 (11)
C10.0484 (12)0.0678 (15)0.0626 (13)0.0005 (11)0.0058 (10)0.0057 (12)
C20.0552 (12)0.0461 (12)0.0440 (10)0.0007 (9)0.0014 (9)0.0074 (9)
C30.0651 (13)0.0518 (13)0.0479 (11)0.0098 (11)0.0066 (10)0.0042 (10)
C40.0763 (15)0.0480 (13)0.0528 (12)0.0119 (11)0.0020 (11)0.0008 (10)
C50.0755 (16)0.0577 (14)0.0555 (13)0.0040 (12)0.0140 (12)0.0069 (11)
C60.0601 (13)0.0548 (13)0.0481 (11)0.0088 (10)0.0075 (9)0.0021 (10)
C70.0567 (12)0.0431 (11)0.0394 (9)0.0034 (9)0.0013 (8)0.0056 (8)
C80.0400 (9)0.0454 (11)0.0420 (9)0.0042 (8)0.0020 (8)0.0043 (8)
C90.0431 (9)0.0360 (9)0.0334 (8)0.0018 (7)0.0008 (7)0.0066 (7)
C100.0465 (10)0.0472 (11)0.0407 (9)0.0020 (9)0.0003 (8)0.0031 (8)
C110.0625 (13)0.0466 (12)0.0413 (10)0.0026 (10)0.0034 (9)0.0009 (9)
C120.0644 (13)0.0438 (12)0.0449 (11)0.0059 (10)0.0036 (9)0.0019 (9)
C130.0495 (11)0.0474 (12)0.0564 (12)0.0082 (9)0.0065 (9)0.0001 (10)
C140.0438 (10)0.0404 (10)0.0445 (10)0.0035 (8)0.0008 (8)0.0029 (8)
C150.0408 (10)0.0639 (15)0.0811 (16)0.0020 (10)0.0016 (10)0.0208 (13)
Geometric parameters (Å, º) top
N1—N21.278 (2)C4—C51.387 (4)
N1—C71.424 (3)C4—H40.95
N1—HN10.88C5—C61.355 (3)
N2—C81.332 (3)C5—H50.95
N3—N41.302 (2)C6—C71.407 (3)
N3—C81.319 (2)C6—H60.95
N4—C91.410 (2)C9—C101.396 (3)
N4—HN40.88C9—C141.399 (3)
N5—O2B1.192 (13)C10—C111.382 (3)
N5—O1A1.208 (5)C10—H100.95
N5—O1B1.210 (13)C11—C121.384 (3)
N5—O2A1.212 (6)C11—H110.95
N5—C81.479 (3)C12—C131.377 (3)
C1—C21.470 (3)C12—H120.95
C1—H1A0.98C13—C141.392 (3)
C1—H1B0.98C13—H130.95
C1—H1C0.98C14—C151.494 (3)
C2—C71.382 (3)C15—H15A0.98
C2—C31.411 (3)C15—H15B0.98
C3—C41.355 (3)C15—H15C0.98
C3—H30.95
N2—N1—C7113.21 (17)C5—C6—C7119.8 (2)
N2—N1—HN1123.4C5—C6—H6120.1
C7—N1—HN1123.4C7—C6—H6120.1
N1—N2—C8117.68 (17)C2—C7—C6121.0 (2)
N4—N3—C8117.57 (16)C2—C7—N1117.44 (19)
N3—N4—C9116.44 (15)C6—C7—N1121.53 (19)
N3—N4—HN4121.8N3—C8—N2136.45 (18)
C9—N4—HN4121.8N3—C8—N5111.97 (17)
O2B—N5—O1A117.8 (14)N2—C8—N5111.57 (17)
O2B—N5—O1B134 (2)C10—C9—C14120.83 (18)
O1A—N5—O2A121.0 (5)C10—C9—N4121.64 (17)
O1B—N5—O2A124.2 (14)C14—C9—N4117.53 (16)
O2B—N5—C8115.1 (14)C11—C10—C9120.14 (19)
O1A—N5—C8119.5 (4)C11—C10—H10119.9
O1B—N5—C8110.4 (16)C9—C10—H10119.9
O2A—N5—C8119.4 (4)C10—C11—C12119.6 (2)
C2—C1—H1A109.5C10—C11—H11120.2
C2—C1—H1B109.5C12—C11—H11120.2
H1A—C1—H1B109.5C13—C12—C11119.9 (2)
C2—C1—H1C109.5C13—C12—H12120
H1A—C1—H1C109.5C11—C12—H12120
H1B—C1—H1C109.5C12—C13—C14122.1 (2)
C7—C2—C3117.0 (2)C12—C13—H13118.9
C7—C2—C1122.4 (2)C14—C13—H13118.9
C3—C2—C1120.5 (2)C13—C14—C9117.34 (18)
C4—C3—C2121.8 (2)C13—C14—C15121.07 (19)
C4—C3—H3119.1C9—C14—C15121.59 (18)
C2—C3—H3119.1C14—C15—H15A109.5
C3—C4—C5120.0 (2)C14—C15—H15B109.5
C3—C4—H4120H15A—C15—H15B109.5
C5—C4—H4120C14—C15—H15C109.5
C6—C5—C4120.3 (2)H15A—C15—H15C109.5
C6—C5—H5119.8H15B—C15—H15C109.5
C4—C5—H5119.8
C7—N1—N2—C8178.96 (16)O1A—N5—C8—N3159.5 (10)
C8—N3—N4—C9178.28 (15)O1B—N5—C8—N3177 (2)
C7—C2—C3—C42.2 (3)O2A—N5—C8—N323.3 (11)
C1—C2—C3—C4179.8 (2)O2B—N5—C8—N2169 (3)
C2—C3—C4—C50.1 (4)O1A—N5—C8—N219.9 (10)
C3—C4—C5—C61.7 (4)O1B—N5—C8—N23 (2)
C4—C5—C6—C70.9 (4)O2A—N5—C8—N2157.4 (11)
C3—C2—C7—C63.0 (3)N3—N4—C9—C103.3 (2)
C1—C2—C7—C6179.5 (2)N3—N4—C9—C14176.70 (16)
C3—C2—C7—N1176.77 (17)C14—C9—C10—C111.0 (3)
C1—C2—C7—N10.8 (3)N4—C9—C10—C11178.91 (17)
C5—C6—C7—C21.5 (3)C9—C10—C11—C120.8 (3)
C5—C6—C7—N1178.3 (2)C10—C11—C12—C130.2 (3)
N2—N1—C7—C2167.38 (17)C11—C12—C13—C140.3 (3)
N2—N1—C7—C612.4 (3)C12—C13—C14—C90.1 (3)
N4—N3—C8—N20.3 (3)C12—C13—C14—C15179.8 (2)
N4—N3—C8—N5178.83 (16)C10—C9—C14—C130.6 (3)
N1—N2—C8—N30.8 (3)N4—C9—C14—C13179.37 (16)
N1—N2—C8—N5179.90 (16)C10—C9—C14—C15179.5 (2)
O2B—N5—C8—N311 (3)N4—C9—C14—C150.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1Ai0.952.423.239 (9)145
Symmetry code: (i) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H15N5O2
Mr297.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)14.6525 (3), 10.2523 (3), 19.2425 (4)
V3)2890.64 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.19 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.960, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
24031, 3619, 2487
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.180, 1.05
No. of reflections3619
No. of parameters221
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.21

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1Ai0.952.423.239 (9)145
Symmetry code: (i) x1/2, y1/2, z.
Table 2. Short π···π interaction geometries (°, Å) top
Cg(X)···Cg(Y)Cg···CgAlphaBetaGammaCg(X)perpCg(X)perp
Cg1···Cg2i3.48137.2154.8512.043.4047-3.4688
Cg1···Cg3i3.39762.5893.113.37-3.39173.3925
For centroids: Cg1 = N1—N2C8—N3N4, Cg2 = ring C2 – C7, Cg3 = ring C9 – C14; Symmetry codes: i = 1/2-X,1/2+Y,Z; Alpha = Dihedral angle between Cg(X) and Cg(Y); Cg(X)perp = Perpendicular distance of Cg(X) on ring Y; Cg(X)perp = Perpendicular distance of Cg(Y) on ring X; Beta = Angle Cg(X)···Cg(Y) vector and normal to ring X; Gamma = Angle Cg(I)···Cg(J) vector and normal to plane Y;
 

Acknowledgements

Research funds of the Universities of Johannesburg, Free State and Port Elizabeth, and the National Research Foundation of South Africa are gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279–1286.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIrving, H. M. N. H. (1977). Dithizone, Analytical Sciences Monographs No. 5. London: The Chemical Society.  Google Scholar
First citationLaing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248–1252.  CSD CrossRef Google Scholar
First citationMito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517–9524.  CSD CrossRef CAS Web of Science Google Scholar
First citationPelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190–2194.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Eschwege, K. G., Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A, doi:10.1021/jp208212e.  Google Scholar
First citationVon Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds