organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o310-o311

(3-Chloro­phen­yl){2-eth­­oxy-5-[(Z)-hy­droxy(phen­yl)methyl­­idene]cyclo­penta-1,3-dien-1-yl}methanone

aOrganic Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028, Cluj Napoca, Romania, and bInorganic Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028, Cluj Napoca, Romania
*Correspondence e-mail: ebogdan@chem.ubbcluj.ro

(Received 7 December 2011; accepted 22 December 2011; online 11 January 2012)

The title compound, C21H17ClO3, which crystallizes as one of two possible oxo/hy­droxy-fulvene prototropic tautomers, possesses a strong intra­molecular O—H⋯O hydrogen bond that closes a seven-membered ring. The dihedral angles between the central five-membered ring and two pendant rings are 55.05 (9) and 44.51 (10)°. The crystal packing is characterized by weak inter­molecular C—H⋯O inter­actions between an H atom of the oxymethyl­ene unit and the carbonyl group of an adjacent mol­ecule, resulting in formation of chains of mol­ecules along the a axis.

Related literature

For the structures of related 2-acyl-6-hydoxyfulvene derivatives, see: Ferguson et al. (1975[Ferguson, G., Marsh, W. C., Restivo, R. J. & Lloyd, D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 998-1004.]); Dong et al. (2004[Dong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727-4739.], 2006[Dong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447-462.]). For more information on the synthesis of 2-acyl-6-hydoxyfulvene derivatives, see: Dong et al. (2004[Dong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727-4739.], 2006[Dong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447-462.]). For preparation details, see: Christl et al. (1998[Christl, M., Bien, N., Bodenschatz, G., Feineis, E., Hegmann, J., Hofmann, C., Mertelmeyer, S., Ostheimer, J., Sammtleben, F., Wehner, S., Peters, E.-M., Peters, K., Pfeiffer, M. & Stalke, D. (1998). Chem. Commun. pp. 2387-2389.]). For compounds obtained from 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004[Dong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727-4739.]); Li et al. (2008[Li, J., Ma, J.-P., Liu, F., Wu, X.-W., Dong, Y.-B. & Huang, R.-Q. (2008). Organometallics, 27, 5446-5452.]); Snyder et al. (2005[Snyder, C. A., Selegue, J. P., Tice, N. C., Wallace, C. E., Blankenbuehler, M. T., Parkin, S., Allen, K. D. E. & Beck, R. T. (2005). J. Am. Chem. Soc. 127, 15010-15011.]). For complexes based on 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004[Dong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727-4739.], 2006[Dong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447-462.]); Wang et al. (2005[Wang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. S. (2005). Cryst. Growth Des. 5, 701-706.]). For their various applications, see: Hong et al. (2005[Hong, B.-C., Chen, F.-L., Chen, S.-H., Liao, J.-H. & Lee, G.-H. (2005). Org. Lett. 7, 557-560.]); Kondo et al. (1992[Kondo, K., Goda, H., Takemoto, K., Aso, H., Sasaki, T., Kawakami, K., Yoshida, H. & Yoshida, K. (1992). J. Mater. Chem. 2, 1097-1102.]); Vicente et al. (1995[Vicente, J., Abad, J., Gil-Rubio, J. & Jones, P. G. (1995). Organometallics, 14, 2677-2688.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17ClO3

  • Mr = 352.80

  • Monoclinic, P 21 /c

  • a = 8.1369 (16) Å

  • b = 27.737 (6) Å

  • c = 7.6709 (15) Å

  • β = 98.51 (3)°

  • V = 1712.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 297 K

  • 0.30 × 0.29 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.940

  • 15678 measured reflections

  • 3002 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.125

  • S = 1.17

  • 3002 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 1.07 (5) 1.38 (5) 2.435 (3) 168 (5)
C20—H20B⋯O2i 0.97 2.51 3.246 (3) 133
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Widely used as synthetic precursors, fulvenes are key intermediates in the total synthesis of several natural products (Hong et al. 2005, Vicente et al. 1995) and are well known as one of the important organic ligands used in construction of organometalic complexes (Li et al. 2008, Dong et al. 2006, Snyder et al. 2005, Wang et al. 2005, Dong et al. 2004). Fulvenes also raised interest due to their potential as non-linear optic materials (Kondo et al. 1992).

The title compound was obtained as a by-product in the oxidation reaction of dihydro-α-pyrone 1-(3-chlorophenyl)-4-phenyl-4a,5-dihydrocyclopenta[c]pyran-3(4H)-one with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) in chloroform (Christl et al. 1998). We observed that during the dehydrogenation process in order to obtain the corresponding α-pyrone, a competitive reaction underwent with formation of the fulvene derivative (Fig. 1) only when chloroform containing 0.5–1% ethanol as stabilizer is used as solvent. By performing the oxidation reaction in ethanol free of chloroform, no fulvene structure of the title compound could be identified.

In the molecule of the title compound (Fig. 1), the C—C bond lenghts of the five-membered ring as well as C13—C14 and C15—C19 range from 1.366 (3) to 1.481 (7) Å, corresponding to a delocalized system extended from CO to the enol OH group (Ferguson et al. 1975). The hydroxy-fulvene tautomer is favored by the strong intramolecular H-bonding of the enol hydrogen atom H1 and the carbonyl oxygen atom O2, [H1···O2 = 1.38 (5) Å, O1—H1···O2 = 168 (5)°]. Thus a H-bonded seven-membered ring almost coplanar with the five-membered one is formed. The two aryl units attached at C13 and C19 are almost orthogonal disposed, the dihedral angles between the phenyl and m-chlorophenylene with respect to the seven-membered ring plane being 44.4 (9) and 54.4 (0)° respectively.

The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds, therefore chains of parallel molecules having the same orientation are formed [H20B···O2i = 2.51 (2) Å, C20—H20B···O2i = 133 (2)°; symmetry code: (i) -1 + x, y, z].

Related literature top

For the structures of related 2-acyl-6-hydoxyfulvene derivatives, see: Ferguson et al. (1975); Dong et al. (2004, 2006). For more information on the synthesis of 2-acyl-6-hydoxyfulvene derivatives, see: Dong et al. (2004, 2006). For preparation details, see: Christl et al. (1998). For compounds obtained from 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004); Li et al. (2008); Snyder et al. (2005). For complexes based on 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004, 2006); Wang et al. (2005). For their various applications, see: Hong et al. (2005); Kondo et al. (1992); Vicente et al. (1995).

Experimental top

A solution of (4S,4aR)-1-(3-chlorophenyl)-4-phenyl-4a,5-dihydrocyclopenta[c]pyran-3(4H)-one (0.5 g, 1.55 mmol s, 1 equiv.), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in 10 ml anhydrous chloroform (with 0.5–1% ethanol as stabilizer) was refluxed under argon for 1.5 h. The reaction mixture was cooled to 0 °C and the brown precipitate was filtered-off. The filtrate was washed with water and brine, dried with MgSO4 and the solvent removed in vacuo at 30 °C. The crude product was purified by column chromatography on silica gel (petroleum ether/diethyl ether = 2:1) to afford the major product 1-(3-chlorophenyl)-4-phenylcyclopenta[c]pyran-3(5H)-one (0.094 g, 19%) as a yellow solid, and (Z)-(3-chlorophenyl)(2-ethoxy-5-(hydroxy(phenyl)methylene)cyclopenta-1,3-dien-1-yl)methanone (0.042 g, 8%) as a light brown solid. Crystals suitable for the diffraction experiment were obtained by slow evaporation from solution (pethroleum ether / diethyl ether = 1: 2) of the title compound.

Refinement top

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso= 1.5Ueq(C) for methyl H atoms. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. Although O1 and O2 are chemically almost equivalent as protonation sites (the only difference is the position of a remote OEt and Cl substituents), the hydrogen was objectively localized and refined at O1. Its high thermal parameter is an attribute of a strong intramolecular H bond and our attempt to refine a model with the hydrogen disordered between the two alternative positions was unsuccessful (i.e. this is a single-well potential surface for the proton - at least at room temperature).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme and the intramolecular O1—H1···O2 hydrogen bond. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for the crystal of the title compound viewed along c axis.
(3-Chlorophenyl){2-ethoxy-5-[(Z)-hydroxy(phenyl)methylidene]cyclopenta- 1,3-dien-1-yl}methanone top
Crystal data top
C21H17ClO3F(000) = 736
Mr = 352.80Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3314 reflections
a = 8.1369 (16) Åθ = 2.5–23.2°
b = 27.737 (6) ŵ = 0.24 mm1
c = 7.6709 (15) ÅT = 297 K
β = 98.51 (3)°Block, yellow
V = 1712.2 (6) Å30.30 × 0.29 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Radiation source: fine-focus sealed tube2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.932, Tmax = 0.940k = 3232
15678 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.0364P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H17ClO3V = 1712.2 (6) Å3
Mr = 352.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1369 (16) ŵ = 0.24 mm1
b = 27.737 (6) ÅT = 297 K
c = 7.6709 (15) Å0.30 × 0.29 × 0.26 mm
β = 98.51 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2683 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.940Rint = 0.040
15678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.22 e Å3
3002 reflectionsΔρmin = 0.29 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18516 (11)0.68353 (3)0.59613 (12)0.0710 (3)
O10.4203 (2)0.43102 (8)0.1762 (3)0.0672 (6)
O20.4234 (2)0.51880 (8)0.1798 (4)0.0765 (7)
C150.1504 (3)0.50390 (9)0.2264 (3)0.0368 (6)
C190.2853 (3)0.53450 (10)0.2149 (4)0.0466 (7)
C140.1450 (3)0.45072 (9)0.2082 (3)0.0374 (6)
C160.0122 (3)0.51749 (9)0.2502 (3)0.0352 (5)
C170.1124 (3)0.47648 (9)0.2510 (3)0.0424 (6)
H170.22390.47610.26510.051*
C10.2831 (3)0.58783 (9)0.2398 (4)0.0428 (6)
C20.2385 (3)0.60855 (9)0.3890 (4)0.0452 (6)
H20.20330.58940.47570.054*
C180.0174 (3)0.43706 (9)0.2275 (3)0.0417 (6)
H180.05530.40540.22460.050*
C30.2463 (3)0.65780 (10)0.4090 (4)0.0486 (7)
C130.2684 (3)0.41810 (10)0.1820 (3)0.0442 (6)
C70.2423 (3)0.36553 (9)0.1635 (3)0.0435 (6)
C60.3382 (3)0.61725 (11)0.1155 (4)0.0534 (7)
H60.37110.60370.01530.064*
C40.2980 (4)0.68732 (11)0.2852 (5)0.0608 (8)
H40.30120.72060.30030.073*
C80.1071 (4)0.34512 (10)0.0608 (4)0.0539 (7)
H80.02610.36490.00020.065*
C50.3449 (4)0.66657 (11)0.1384 (5)0.0634 (9)
H50.38180.68590.05310.076*
C120.3628 (4)0.33490 (11)0.2487 (4)0.0604 (8)
H120.45730.34770.31570.073*
C100.2075 (5)0.26619 (12)0.1346 (5)0.0813 (11)
H100.19520.23290.12600.098*
C90.0901 (5)0.29571 (11)0.0471 (5)0.0705 (9)
H90.00240.28260.02250.085*
C110.3434 (5)0.28564 (13)0.2348 (5)0.0786 (11)
H110.42400.26550.29460.094*
O30.0580 (2)0.56340 (6)0.2675 (2)0.0435 (4)
C200.2232 (3)0.57156 (10)0.3075 (4)0.0461 (7)
H20A0.24250.55180.40700.055*
H20B0.30490.56310.20700.055*
C210.2378 (4)0.62365 (11)0.3506 (4)0.0577 (8)
H21A0.15380.63200.44750.087*
H21B0.34560.62980.38250.087*
H21C0.22340.64280.24970.087*
H10.436 (5)0.4691 (17)0.188 (6)0.127 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0812 (6)0.0519 (5)0.0806 (6)0.0001 (4)0.0148 (4)0.0210 (4)
O10.0454 (12)0.0493 (13)0.1120 (19)0.0028 (10)0.0289 (12)0.0124 (12)
O20.0396 (11)0.0527 (13)0.145 (2)0.0082 (10)0.0392 (13)0.0193 (14)
C150.0341 (13)0.0366 (14)0.0405 (14)0.0013 (10)0.0079 (11)0.0027 (11)
C190.0372 (15)0.0462 (16)0.0584 (17)0.0032 (12)0.0133 (13)0.0069 (13)
C140.0377 (14)0.0361 (14)0.0391 (14)0.0024 (11)0.0080 (11)0.0017 (11)
C160.0337 (12)0.0357 (14)0.0363 (13)0.0013 (11)0.0054 (10)0.0005 (11)
C170.0321 (13)0.0446 (15)0.0516 (16)0.0043 (11)0.0100 (11)0.0035 (12)
C10.0298 (13)0.0419 (15)0.0571 (17)0.0047 (11)0.0079 (12)0.0031 (13)
C20.0381 (14)0.0407 (15)0.0570 (17)0.0072 (12)0.0082 (12)0.0003 (13)
C180.0439 (15)0.0341 (14)0.0479 (15)0.0064 (11)0.0093 (12)0.0007 (11)
C30.0394 (15)0.0409 (16)0.0636 (18)0.0024 (12)0.0011 (13)0.0041 (14)
C130.0442 (15)0.0457 (16)0.0442 (15)0.0018 (12)0.0116 (12)0.0026 (12)
C70.0525 (16)0.0415 (15)0.0398 (15)0.0057 (13)0.0180 (12)0.0011 (12)
C60.0431 (15)0.0594 (19)0.0591 (18)0.0100 (14)0.0121 (13)0.0015 (14)
C40.0570 (18)0.0378 (16)0.085 (2)0.0051 (14)0.0036 (17)0.0043 (16)
C80.0642 (19)0.0423 (16)0.0556 (18)0.0028 (14)0.0106 (15)0.0011 (13)
C50.067 (2)0.0508 (19)0.074 (2)0.0106 (16)0.0143 (17)0.0181 (16)
C120.0607 (19)0.0574 (19)0.064 (2)0.0195 (15)0.0121 (15)0.0002 (15)
C100.115 (3)0.0354 (18)0.100 (3)0.008 (2)0.038 (3)0.0013 (18)
C90.087 (2)0.0418 (18)0.083 (2)0.0044 (17)0.0135 (19)0.0096 (17)
C110.096 (3)0.056 (2)0.088 (3)0.035 (2)0.026 (2)0.0172 (19)
O30.0324 (9)0.0378 (10)0.0620 (12)0.0001 (8)0.0133 (8)0.0033 (8)
C200.0316 (13)0.0542 (17)0.0541 (16)0.0054 (12)0.0111 (12)0.0029 (13)
C210.0549 (18)0.0573 (19)0.0633 (19)0.0160 (14)0.0166 (15)0.0047 (15)
Geometric parameters (Å, º) top
Cl1—C31.740 (3)C7—C121.385 (4)
O1—C131.294 (3)C6—C51.379 (4)
O1—H11.07 (5)C6—H60.9300
O2—C191.271 (3)C4—C51.369 (5)
O2—H11.38 (5)C4—H40.9300
C15—C191.400 (3)C8—C91.380 (4)
C15—C161.414 (3)C8—H80.9300
C15—C141.482 (3)C5—H50.9300
C19—C11.492 (4)C12—C111.378 (5)
C14—C131.388 (3)C12—H120.9300
C14—C181.404 (3)C10—C91.358 (5)
C16—O31.339 (3)C10—C111.361 (5)
C16—C171.400 (3)C10—H100.9300
C17—C181.366 (4)C9—H90.9300
C17—H170.9300C11—H110.9300
C1—C21.376 (4)O3—C201.440 (3)
C1—C61.379 (4)C20—C211.491 (4)
C2—C31.375 (4)C20—H20A0.9700
C2—H20.9300C20—H20B0.9700
C18—H180.9300C21—H21A0.9600
C3—C41.366 (4)C21—H21B0.9600
C13—C71.477 (4)C21—H21C0.9600
C7—C81.377 (4)
C13—O1—H1112 (2)C5—C6—H6119.7
C19—O2—H1113.3 (18)C1—C6—H6119.7
C19—C15—C16127.1 (2)C3—C4—C5118.2 (3)
C19—C15—C14127.6 (2)C3—C4—H4120.9
C16—C15—C14105.2 (2)C5—C4—H4120.9
O2—C19—C15122.1 (2)C7—C8—C9121.0 (3)
O2—C19—C1113.2 (2)C7—C8—H8119.5
C15—C19—C1124.7 (2)C9—C8—H8119.5
C13—C14—C18123.5 (2)C4—C5—C6120.7 (3)
C13—C14—C15130.6 (2)C4—C5—H5119.6
C18—C14—C15105.9 (2)C6—C5—H5119.6
O3—C16—C17127.0 (2)C11—C12—C7120.5 (3)
O3—C16—C15123.1 (2)C11—C12—H12119.8
C17—C16—C15109.9 (2)C7—C12—H12119.8
C18—C17—C16108.0 (2)C9—C10—C11119.6 (3)
C18—C17—H17126.0C9—C10—H10120.2
C16—C17—H17126.0C11—C10—H10120.2
C2—C1—C6118.7 (3)C10—C9—C8120.4 (3)
C2—C1—C19122.0 (2)C10—C9—H9119.8
C6—C1—C19119.1 (2)C8—C9—H9119.8
C3—C2—C1119.6 (3)C10—C11—C12120.7 (3)
C3—C2—H2120.2C10—C11—H11119.6
C1—C2—H2120.2C12—C11—H11119.6
C17—C18—C14111.0 (2)C16—O3—C20116.93 (19)
C17—C18—H18124.5O3—C20—C21107.9 (2)
C14—C18—H18124.5O3—C20—H20A110.1
C4—C3—C2122.1 (3)C21—C20—H20A110.1
C4—C3—Cl1118.9 (2)O3—C20—H20B110.1
C2—C3—Cl1119.0 (2)C21—C20—H20B110.1
O1—C13—C14122.6 (2)H20A—C20—H20B108.4
O1—C13—C7113.2 (2)C20—C21—H21A109.5
C14—C13—C7124.1 (2)C20—C21—H21B109.5
C8—C7—C12117.8 (3)H21A—C21—H21B109.5
C8—C7—C13123.5 (2)C20—C21—H21C109.5
C12—C7—C13118.6 (3)H21A—C21—H21C109.5
C5—C6—C1120.7 (3)H21B—C21—H21C109.5
C16—C15—C19—O2174.5 (3)C18—C14—C13—O1175.3 (3)
C14—C15—C19—O22.5 (5)C15—C14—C13—O12.9 (4)
C16—C15—C19—C14.9 (4)C18—C14—C13—C72.8 (4)
C14—C15—C19—C1178.2 (3)C15—C14—C13—C7179.0 (3)
C19—C15—C14—C132.5 (5)O1—C13—C7—C8137.3 (3)
C16—C15—C14—C13179.9 (3)C14—C13—C7—C844.5 (4)
C19—C15—C14—C18179.1 (3)O1—C13—C7—C1240.3 (4)
C16—C15—C14—C181.6 (3)C14—C13—C7—C12137.9 (3)
C19—C15—C16—O30.9 (4)C2—C1—C6—C51.4 (4)
C14—C15—C16—O3178.4 (2)C19—C1—C6—C5177.1 (3)
C19—C15—C16—C17178.7 (3)C2—C3—C4—C50.8 (4)
C14—C15—C16—C171.2 (3)Cl1—C3—C4—C5179.7 (2)
O3—C16—C17—C18179.3 (2)C12—C7—C8—C91.7 (4)
C15—C16—C17—C180.3 (3)C13—C7—C8—C9179.3 (3)
O2—C19—C1—C2126.2 (3)C3—C4—C5—C60.8 (5)
C15—C19—C1—C254.4 (4)C1—C6—C5—C40.3 (5)
O2—C19—C1—C649.3 (4)C8—C7—C12—C112.2 (4)
C15—C19—C1—C6130.1 (3)C13—C7—C12—C11180.0 (3)
C6—C1—C2—C31.4 (4)C11—C10—C9—C80.6 (5)
C19—C1—C2—C3176.9 (2)C7—C8—C9—C100.3 (5)
C16—C17—C18—C140.8 (3)C9—C10—C11—C120.1 (6)
C13—C14—C18—C17179.9 (2)C7—C12—C11—C101.3 (5)
C15—C14—C18—C171.5 (3)C17—C16—O3—C206.2 (4)
C1—C2—C3—C40.3 (4)C15—C16—O3—C20174.3 (2)
C1—C2—C3—Cl1178.6 (2)C16—O3—C20—C21170.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.07 (5)1.38 (5)2.435 (3)168 (5)
C20—H20B···O2i0.972.513.246 (3)133
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H17ClO3
Mr352.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)8.1369 (16), 27.737 (6), 7.6709 (15)
β (°) 98.51 (3)
V3)1712.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.29 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.932, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
15678, 3002, 2683
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.125, 1.17
No. of reflections3002
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.07 (5)1.38 (5)2.435 (3)168 (5)
C20—H20B···O2i0.972.513.246 (3)133
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the CNCS–UEFISCDI, project No. PN II_IDEI_2278/2008.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristl, M., Bien, N., Bodenschatz, G., Feineis, E., Hegmann, J., Hofmann, C., Mertelmeyer, S., Ostheimer, J., Sammtleben, F., Wehner, S., Peters, E.-M., Peters, K., Pfeiffer, M. & Stalke, D. (1998). Chem. Commun. pp. 2387–2389.  Web of Science CSD CrossRef Google Scholar
First citationDong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727–4739.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Marsh, W. C., Restivo, R. J. & Lloyd, D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 998–1004.  CrossRef Google Scholar
First citationHong, B.-C., Chen, F.-L., Chen, S.-H., Liao, J.-H. & Lee, G.-H. (2005). Org. Lett. 7, 557–560.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKondo, K., Goda, H., Takemoto, K., Aso, H., Sasaki, T., Kawakami, K., Yoshida, H. & Yoshida, K. (1992). J. Mater. Chem. 2, 1097–1102.  CrossRef CAS Web of Science Google Scholar
First citationLi, J., Ma, J.-P., Liu, F., Wu, X.-W., Dong, Y.-B. & Huang, R.-Q. (2008). Organometallics, 27, 5446–5452.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnyder, C. A., Selegue, J. P., Tice, N. C., Wallace, C. E., Blankenbuehler, M. T., Parkin, S., Allen, K. D. E. & Beck, R. T. (2005). J. Am. Chem. Soc. 127, 15010–15011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVicente, J., Abad, J., Gil-Rubio, J. & Jones, P. G. (1995). Organometallics, 14, 2677–2688.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. S. (2005). Cryst. Growth Des. 5, 701–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o310-o311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds