metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ferrocenylmeth­yl)tri­methyl­ammonium perchlorate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 8 January 2012; accepted 18 January 2012; online 21 January 2012)

The asymmetric unit of the title complex, [Fe(C5H5)(C9H15N)]ClO4, contains one discrete (ferrocenylmeth­yl)trimethyl­ammonium cation and one perchlorate anion. The anion is disordered over two sets of sites, with refined occupancies of 0.776 (8) and 0.224 (8). The distances from the Fe atom to the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings are 1.650 (1) and 1.640 (1) Å, respectively. The Cp rings form a dihedral angle of 2.66 (3)°.

Related literature

For a related structure, see: Pullen et al. (1998[Pullen, A. E., Faulmann, C., Pokhodnya, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714-6720.]). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780-12786.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947-11951.],c[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658-5662.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C9H15N)]ClO4

  • Mr = 357.61

  • Monoclinic, P 21 /c

  • a = 8.5972 (17) Å

  • b = 13.783 (3) Å

  • c = 13.096 (3) Å

  • β = 101.23 (3)°

  • V = 1522.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 15527 measured reflections

  • 3479 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.07

  • 3479 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containig amino cations have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011a, b and c). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and a series of new materials with this organic molecules have been elaborated (Fu et al. 2007, 2008, 2009; Fu & Xiong 2008). Herein we present the crystal structure of the title compound (I), which may be used as a cation in organic salts. In this study, we describe the crystal structure of this compound.

The asymmetric unit of (I) contains one discrete trimethyl(ferrocenyl)methylammonium cation and one ClO4- anion (Fig. 1). The anion is disordered over two sets of sites with refined occupancies 0.776 (8) and 0.224 (8). The distances from the Fe atom to the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.650 (1) and 1.640 (1)Å , respectively. The dihedral angles between the two Cp rings are 2.66 (3)°. The two cyclopentadienyl rings of the ferrocenyl group are almost eclipsed with the (C—Cg1—Cg2—C) torsion angles in the two Cp rings in the range of 3.67 (3) to 4.74 (3)°. For a comparison of bond lengths and angles, see those in the related structure (Pullen et al., 1998).

Related literature top

For a related structure, see: Pullen et al. (1998). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b,c); Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

A mixture of commercial trimethyl(ferrocenyl)methylamine (0.4 mmol) and HClO4 (0.4 mmol) were dissolved in EtOH/distilled water (1:1 v/v) solvent. The solution was slowly evaporated in air affording red block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.97 Å(C methylene), C-H = 0.98 Å(C ferrocenyl) and C-H = 0.96 Å(C methyl) with Uiso(H) = 1.2Ueq(C except methyl) and Uiso(H) = 1.5Ueq(methyl).

The ClO4- anion is disordered over sites and refined using the PART in struction in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown.
(Ferrocenylmethyl)trimethylammonium perchlorate top
Crystal data top
[Fe(C5H5)(C9H15N)]ClO4F(000) = 744
Mr = 357.61Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3479 reflections
a = 8.5972 (17) Åθ = 3.0–27.5°
b = 13.783 (3) ŵ = 1.18 mm1
c = 13.096 (3) ÅT = 298 K
β = 101.23 (3)°Block, red
V = 1522.1 (6) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3479 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.910, Tmax = 1.000l = 1617
15527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0595P)2 + 2.0318P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Fe(C5H5)(C9H15N)]ClO4V = 1522.1 (6) Å3
Mr = 357.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5972 (17) ŵ = 1.18 mm1
b = 13.783 (3) ÅT = 298 K
c = 13.096 (3) Å0.10 × 0.03 × 0.03 mm
β = 101.23 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3479 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2642 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.062
15527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3479 reflectionsΔρmin = 0.73 e Å3
218 parameters
Special details top

Experimental. The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (411 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 4.4 to 9.5).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.66928 (6)0.67531 (3)0.46111 (4)0.03474 (18)
N10.2467 (4)0.8607 (2)0.3523 (2)0.0387 (7)
C10.6435 (5)0.6059 (3)0.3215 (3)0.0439 (9)
H1A0.56750.62310.25810.053*
C20.6154 (5)0.5411 (3)0.3991 (3)0.0463 (9)
H2A0.51690.50520.39890.056*
C30.7542 (6)0.5370 (3)0.4773 (4)0.0528 (11)
H3A0.76940.49770.54080.063*
C40.8680 (5)0.5997 (3)0.4467 (3)0.0516 (10)
H4A0.97560.61170.48570.062*
C50.7992 (5)0.6413 (3)0.3501 (3)0.0469 (9)
H5A0.85030.68770.31050.056*
C60.4993 (5)0.7790 (2)0.4457 (3)0.0371 (8)
C70.6527 (5)0.8227 (3)0.4722 (3)0.0476 (10)
H7A0.69670.87020.42990.057*
C80.7317 (6)0.7840 (3)0.5682 (4)0.0568 (11)
H8A0.83960.79990.60410.068*
C90.6286 (6)0.7178 (3)0.6028 (3)0.0577 (12)
H9A0.65320.67960.66700.069*
C100.4849 (5)0.7132 (3)0.5283 (3)0.0455 (9)
H10A0.39250.67300.53270.055*
C110.3848 (5)0.7937 (3)0.3457 (3)0.0415 (8)
H11A0.34290.73100.32030.050*
H11B0.44190.82000.29490.050*
C120.3026 (6)0.9568 (3)0.3968 (4)0.0570 (11)
H12A0.35640.94870.46770.085*
H12B0.21330.99910.39440.085*
H12C0.37410.98450.35690.085*
C130.1414 (5)0.8167 (3)0.4173 (4)0.0587 (11)
H13A0.20100.80510.48620.088*
H13B0.10000.75630.38690.088*
H13C0.05540.86010.42080.088*
C140.1527 (6)0.8749 (4)0.2435 (3)0.0603 (12)
H14A0.06510.91770.24550.091*
H14B0.11340.81340.21520.091*
H14C0.21970.90280.20060.091*
Cl20.18301 (16)0.55643 (10)0.19867 (10)0.0700 (4)0.776 (8)
O1'0.1752 (13)0.5939 (6)0.2902 (6)0.155 (4)0.776 (8)
O2'0.2997 (11)0.6113 (8)0.1573 (5)0.126 (4)0.776 (8)
O3'0.0584 (9)0.5454 (9)0.1175 (7)0.176 (5)0.776 (8)
O4'0.2388 (19)0.4651 (7)0.2210 (8)0.226 (6)0.776 (8)
Cl10.18301 (16)0.55643 (10)0.19867 (10)0.0700 (4)0.224 (8)
O10.109 (3)0.6459 (15)0.174 (2)0.120 (10)0.224 (8)
O20.318 (2)0.547 (2)0.155 (2)0.100 (11)0.224 (8)
O40.204 (2)0.5450 (16)0.2919 (16)0.0700 (4)0.224 (8)
O30.107 (3)0.4943 (15)0.1361 (16)0.0700 (4)0.224 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0385 (3)0.0296 (3)0.0361 (3)0.0032 (2)0.0074 (2)0.0004 (2)
N10.0406 (17)0.0310 (15)0.0446 (17)0.0015 (13)0.0084 (14)0.0006 (13)
C10.049 (2)0.042 (2)0.042 (2)0.0069 (17)0.0115 (17)0.0069 (16)
C20.050 (2)0.0316 (19)0.062 (3)0.0002 (16)0.022 (2)0.0085 (17)
C30.068 (3)0.036 (2)0.059 (3)0.020 (2)0.024 (2)0.0103 (18)
C40.040 (2)0.057 (3)0.057 (2)0.0133 (19)0.0088 (19)0.002 (2)
C50.043 (2)0.052 (2)0.051 (2)0.0006 (18)0.0206 (19)0.0021 (19)
C60.045 (2)0.0279 (18)0.0401 (19)0.0057 (15)0.0118 (16)0.0019 (14)
C70.052 (2)0.0315 (19)0.059 (3)0.0043 (17)0.008 (2)0.0072 (18)
C80.059 (3)0.048 (2)0.057 (3)0.003 (2)0.006 (2)0.017 (2)
C90.080 (3)0.057 (3)0.035 (2)0.021 (2)0.008 (2)0.0040 (19)
C100.057 (2)0.039 (2)0.045 (2)0.0123 (18)0.0210 (19)0.0012 (17)
C110.045 (2)0.0354 (19)0.045 (2)0.0048 (16)0.0113 (17)0.0035 (16)
C120.063 (3)0.031 (2)0.073 (3)0.0022 (19)0.003 (2)0.0063 (19)
C130.048 (2)0.064 (3)0.068 (3)0.003 (2)0.020 (2)0.005 (2)
C140.059 (3)0.063 (3)0.053 (3)0.009 (2)0.003 (2)0.002 (2)
Cl20.0726 (8)0.0714 (9)0.0628 (7)0.0219 (6)0.0057 (6)0.0068 (6)
O1'0.283 (11)0.088 (5)0.131 (6)0.044 (6)0.131 (7)0.052 (5)
O2'0.124 (7)0.192 (9)0.060 (4)0.107 (7)0.012 (4)0.007 (5)
O3'0.089 (5)0.237 (12)0.166 (8)0.068 (6)0.063 (5)0.090 (7)
O4'0.406 (18)0.094 (6)0.182 (9)0.117 (9)0.066 (10)0.035 (6)
Cl10.0726 (8)0.0714 (9)0.0628 (7)0.0219 (6)0.0057 (6)0.0068 (6)
O10.125 (19)0.056 (11)0.16 (2)0.058 (12)0.015 (16)0.007 (13)
O20.017 (7)0.15 (2)0.14 (2)0.028 (11)0.024 (9)0.07 (2)
O40.0726 (8)0.0714 (9)0.0628 (7)0.0219 (6)0.0057 (6)0.0068 (6)
O30.0726 (8)0.0714 (9)0.0628 (7)0.0219 (6)0.0057 (6)0.0068 (6)
Geometric parameters (Å, º) top
Fe1—C102.025 (4)C6—C101.435 (5)
Fe1—C62.026 (4)C6—C111.491 (5)
Fe1—C12.037 (4)C7—C81.412 (6)
Fe1—C22.037 (4)C7—H7A0.9800
Fe1—C32.037 (4)C8—C91.407 (7)
Fe1—C92.040 (4)C8—H8A0.9800
Fe1—C42.041 (4)C9—C101.418 (6)
Fe1—C72.044 (4)C9—H9A0.9800
Fe1—C82.051 (4)C10—H10A0.9800
Fe1—C52.053 (4)C11—H11A0.9700
N1—C131.488 (5)C11—H11B0.9700
N1—C121.489 (5)C12—H12A0.9600
N1—C141.507 (5)C12—H12B0.9600
N1—C111.520 (5)C12—H12C0.9600
C1—C51.405 (6)C13—H13A0.9600
C1—C21.408 (6)C13—H13B0.9600
C1—H1A0.9800C13—H13C0.9600
C2—C31.415 (6)C14—H14A0.9600
C2—H2A0.9800C14—H14B0.9600
C3—C41.420 (6)C14—H14C0.9600
C3—H3A0.9800Cl2—O1'1.319 (6)
C4—C51.410 (6)Cl2—O4'1.358 (7)
C4—H4A0.9800Cl2—O3'1.363 (7)
C5—H5A0.9800Cl2—O2'1.443 (6)
C6—C71.430 (5)
C10—Fe1—C641.48 (15)C3—C4—Fe169.5 (2)
C10—Fe1—C1123.60 (17)C5—C4—H4A126.0
C6—Fe1—C1106.95 (16)C3—C4—H4A126.0
C10—Fe1—C2105.73 (17)Fe1—C4—H4A126.0
C6—Fe1—C2119.82 (16)C1—C5—C4108.0 (4)
C1—Fe1—C240.45 (16)C1—C5—Fe169.3 (2)
C10—Fe1—C3119.43 (17)C4—C5—Fe169.4 (2)
C6—Fe1—C3155.14 (18)C1—C5—H5A126.0
C1—Fe1—C368.17 (17)C4—C5—H5A126.0
C2—Fe1—C340.63 (18)Fe1—C5—H5A126.0
C10—Fe1—C940.84 (18)C7—C6—C10107.1 (4)
C6—Fe1—C968.88 (16)C7—C6—C11125.1 (3)
C1—Fe1—C9160.6 (2)C10—C6—C11127.5 (4)
C2—Fe1—C9123.89 (19)C7—C6—Fe170.1 (2)
C3—Fe1—C9107.20 (18)C10—C6—Fe169.2 (2)
C10—Fe1—C4155.77 (17)C11—C6—Fe1121.6 (2)
C6—Fe1—C4162.09 (17)C8—C7—C6108.5 (4)
C1—Fe1—C467.90 (17)C8—C7—Fe170.1 (2)
C2—Fe1—C468.21 (17)C6—C7—Fe168.8 (2)
C3—Fe1—C440.75 (18)C8—C7—H7A125.7
C9—Fe1—C4121.73 (18)C6—C7—H7A125.7
C10—Fe1—C768.97 (17)Fe1—C7—H7A125.7
C6—Fe1—C741.13 (15)C9—C8—C7107.9 (4)
C1—Fe1—C7122.26 (17)C9—C8—Fe169.5 (2)
C2—Fe1—C7156.55 (17)C7—C8—Fe169.6 (2)
C3—Fe1—C7162.02 (18)C9—C8—H8A126.0
C9—Fe1—C767.86 (18)C7—C8—H8A126.0
C4—Fe1—C7125.84 (18)Fe1—C8—H8A126.0
C10—Fe1—C868.72 (19)C8—C9—C10109.0 (4)
C6—Fe1—C868.92 (17)C8—C9—Fe170.3 (3)
C1—Fe1—C8157.69 (19)C10—C9—Fe169.0 (2)
C2—Fe1—C8160.89 (19)C8—C9—H9A125.5
C3—Fe1—C8124.85 (19)C10—C9—H9A125.5
C9—Fe1—C840.2 (2)Fe1—C9—H9A125.5
C4—Fe1—C8108.92 (19)C9—C10—C6107.4 (4)
C7—Fe1—C840.35 (17)C9—C10—Fe170.1 (2)
C10—Fe1—C5161.13 (17)C6—C10—Fe169.3 (2)
C6—Fe1—C5124.89 (16)C9—C10—H10A126.3
C1—Fe1—C540.19 (16)C6—C10—H10A126.3
C2—Fe1—C567.84 (17)Fe1—C10—H10A126.3
C3—Fe1—C568.07 (17)C6—C11—N1115.0 (3)
C9—Fe1—C5157.41 (19)C6—C11—H11A108.5
C4—Fe1—C540.28 (17)N1—C11—H11A108.5
C7—Fe1—C5109.43 (18)C6—C11—H11B108.5
C8—Fe1—C5123.05 (19)N1—C11—H11B108.5
C13—N1—C12108.9 (3)H11A—C11—H11B107.5
C13—N1—C14108.7 (3)N1—C12—H12A109.5
C12—N1—C14109.1 (3)N1—C12—H12B109.5
C13—N1—C11110.7 (3)H12A—C12—H12B109.5
C12—N1—C11111.5 (3)N1—C12—H12C109.5
C14—N1—C11107.9 (3)H12A—C12—H12C109.5
C5—C1—C2108.4 (4)H12B—C12—H12C109.5
C5—C1—Fe170.5 (2)N1—C13—H13A109.5
C2—C1—Fe169.8 (2)N1—C13—H13B109.5
C5—C1—H1A125.8H13A—C13—H13B109.5
C2—C1—H1A125.8N1—C13—H13C109.5
Fe1—C1—H1A125.8H13A—C13—H13C109.5
C1—C2—C3108.0 (4)H13B—C13—H13C109.5
C1—C2—Fe169.7 (2)N1—C14—H14A109.5
C3—C2—Fe169.7 (2)N1—C14—H14B109.5
C1—C2—H2A126.0H14A—C14—H14B109.5
C3—C2—H2A126.0N1—C14—H14C109.5
Fe1—C2—H2A126.0H14A—C14—H14C109.5
C2—C3—C4107.6 (4)H14B—C14—H14C109.5
C2—C3—Fe169.7 (2)O1'—Cl2—O4'104.2 (6)
C4—C3—Fe169.8 (2)O1'—Cl2—O3'125.5 (8)
C2—C3—H3A126.2O4'—Cl2—O3'104.8 (8)
C4—C3—H3A126.2O1'—Cl2—O2'107.3 (5)
Fe1—C3—H3A126.2O4'—Cl2—O2'108.9 (8)
C5—C4—C3108.0 (4)O3'—Cl2—O2'105.3 (5)
C5—C4—Fe170.3 (2)
C10—Fe1—C1—C5166.9 (2)C3—Fe1—C6—C1047.4 (5)
C6—Fe1—C1—C5124.5 (2)C9—Fe1—C6—C1038.0 (3)
C2—Fe1—C1—C5119.2 (4)C4—Fe1—C6—C10167.7 (5)
C3—Fe1—C1—C581.4 (3)C7—Fe1—C6—C10118.1 (3)
C9—Fe1—C1—C5161.1 (5)C8—Fe1—C6—C1081.3 (3)
C4—Fe1—C1—C537.3 (3)C5—Fe1—C6—C10162.4 (2)
C7—Fe1—C1—C582.1 (3)C10—Fe1—C6—C11122.1 (4)
C8—Fe1—C1—C548.8 (5)C1—Fe1—C6—C110.2 (3)
C10—Fe1—C1—C273.9 (3)C2—Fe1—C6—C1142.3 (4)
C6—Fe1—C1—C2116.3 (2)C3—Fe1—C6—C1174.7 (5)
C3—Fe1—C1—C237.8 (3)C9—Fe1—C6—C11160.2 (4)
C9—Fe1—C1—C241.9 (6)C4—Fe1—C6—C1170.2 (6)
C4—Fe1—C1—C281.9 (3)C7—Fe1—C6—C11119.8 (4)
C7—Fe1—C1—C2158.7 (2)C8—Fe1—C6—C11156.6 (4)
C8—Fe1—C1—C2168.0 (4)C5—Fe1—C6—C1140.2 (4)
C5—Fe1—C1—C2119.2 (4)C10—C6—C7—C80.7 (4)
C5—C1—C2—C30.7 (4)C11—C6—C7—C8174.1 (4)
Fe1—C1—C2—C359.4 (3)Fe1—C6—C7—C858.9 (3)
C5—C1—C2—Fe160.2 (3)C10—C6—C7—Fe159.6 (2)
C10—Fe1—C2—C1123.8 (2)C11—C6—C7—Fe1115.2 (3)
C6—Fe1—C2—C181.1 (3)C10—Fe1—C7—C881.5 (3)
C3—Fe1—C2—C1119.1 (4)C6—Fe1—C7—C8120.2 (4)
C9—Fe1—C2—C1164.5 (2)C1—Fe1—C7—C8161.2 (3)
C4—Fe1—C2—C181.0 (3)C2—Fe1—C7—C8162.5 (4)
C7—Fe1—C2—C150.5 (5)C3—Fe1—C7—C839.9 (7)
C8—Fe1—C2—C1166.0 (5)C9—Fe1—C7—C837.4 (3)
C5—Fe1—C2—C137.5 (2)C4—Fe1—C7—C876.6 (3)
C10—Fe1—C2—C3117.1 (3)C5—Fe1—C7—C8118.6 (3)
C6—Fe1—C2—C3159.7 (2)C10—Fe1—C7—C638.7 (2)
C1—Fe1—C2—C3119.1 (4)C1—Fe1—C7—C678.5 (3)
C9—Fe1—C2—C376.4 (3)C2—Fe1—C7—C642.3 (5)
C4—Fe1—C2—C338.1 (3)C3—Fe1—C7—C6160.1 (5)
C7—Fe1—C2—C3169.6 (4)C9—Fe1—C7—C682.8 (3)
C8—Fe1—C2—C346.9 (6)C4—Fe1—C7—C6163.2 (2)
C5—Fe1—C2—C381.7 (3)C8—Fe1—C7—C6120.2 (4)
C1—C2—C3—C40.3 (4)C5—Fe1—C7—C6121.2 (2)
Fe1—C2—C3—C459.7 (3)C6—C7—C8—C90.9 (5)
C1—C2—C3—Fe159.5 (3)Fe1—C7—C8—C959.1 (3)
C10—Fe1—C3—C279.7 (3)C6—C7—C8—Fe158.1 (3)
C6—Fe1—C3—C245.6 (5)C10—Fe1—C8—C937.2 (3)
C1—Fe1—C3—C237.6 (2)C6—Fe1—C8—C981.8 (3)
C9—Fe1—C3—C2122.4 (3)C1—Fe1—C8—C9165.2 (4)
C4—Fe1—C3—C2118.6 (4)C2—Fe1—C8—C939.2 (7)
C7—Fe1—C3—C2166.6 (5)C3—Fe1—C8—C974.6 (3)
C8—Fe1—C3—C2163.1 (3)C4—Fe1—C8—C9117.1 (3)
C5—Fe1—C3—C281.1 (3)C7—Fe1—C8—C9119.3 (4)
C10—Fe1—C3—C4161.7 (3)C5—Fe1—C8—C9159.5 (3)
C6—Fe1—C3—C4164.3 (3)C10—Fe1—C8—C782.2 (3)
C1—Fe1—C3—C481.0 (3)C6—Fe1—C8—C737.5 (2)
C2—Fe1—C3—C4118.6 (4)C1—Fe1—C8—C745.8 (6)
C9—Fe1—C3—C4119.0 (3)C2—Fe1—C8—C7158.6 (5)
C7—Fe1—C3—C447.9 (7)C3—Fe1—C8—C7166.1 (3)
C8—Fe1—C3—C478.3 (3)C9—Fe1—C8—C7119.3 (4)
C5—Fe1—C3—C437.6 (3)C4—Fe1—C8—C7123.5 (3)
C2—C3—C4—C50.3 (5)C5—Fe1—C8—C781.2 (3)
Fe1—C3—C4—C560.0 (3)C7—C8—C9—C100.9 (5)
C2—C3—C4—Fe159.7 (3)Fe1—C8—C9—C1058.3 (3)
C10—Fe1—C4—C5160.8 (4)C7—C8—C9—Fe159.2 (3)
C6—Fe1—C4—C539.3 (6)C10—Fe1—C9—C8120.5 (4)
C1—Fe1—C4—C537.2 (3)C6—Fe1—C9—C881.9 (3)
C2—Fe1—C4—C581.0 (3)C1—Fe1—C9—C8163.0 (5)
C3—Fe1—C4—C5119.0 (4)C2—Fe1—C9—C8165.6 (3)
C9—Fe1—C4—C5161.7 (3)C3—Fe1—C9—C8124.1 (3)
C7—Fe1—C4—C577.4 (3)C4—Fe1—C9—C881.9 (3)
C8—Fe1—C4—C5119.2 (3)C7—Fe1—C9—C837.5 (3)
C10—Fe1—C4—C341.8 (6)C5—Fe1—C9—C850.0 (6)
C6—Fe1—C4—C3158.3 (5)C6—Fe1—C9—C1038.6 (2)
C1—Fe1—C4—C381.7 (3)C1—Fe1—C9—C1042.4 (6)
C2—Fe1—C4—C338.0 (3)C2—Fe1—C9—C1073.9 (3)
C9—Fe1—C4—C379.3 (3)C3—Fe1—C9—C10115.4 (3)
C7—Fe1—C4—C3163.6 (3)C4—Fe1—C9—C10157.5 (3)
C8—Fe1—C4—C3121.9 (3)C7—Fe1—C9—C1083.0 (3)
C5—Fe1—C4—C3119.0 (4)C8—Fe1—C9—C10120.5 (4)
C2—C1—C5—C40.9 (5)C5—Fe1—C9—C10170.5 (4)
Fe1—C1—C5—C458.8 (3)C8—C9—C10—C60.4 (5)
C2—C1—C5—Fe159.7 (3)Fe1—C9—C10—C659.5 (3)
C3—C4—C5—C10.8 (5)C8—C9—C10—Fe159.1 (3)
Fe1—C4—C5—C158.7 (3)C7—C6—C10—C90.1 (4)
C3—C4—C5—Fe159.5 (3)C11—C6—C10—C9174.5 (3)
C10—Fe1—C5—C135.7 (6)Fe1—C6—C10—C960.0 (3)
C6—Fe1—C5—C174.1 (3)C7—C6—C10—Fe160.2 (3)
C2—Fe1—C5—C137.7 (2)C11—C6—C10—Fe1114.5 (4)
C3—Fe1—C5—C181.7 (3)C6—Fe1—C10—C9118.5 (4)
C9—Fe1—C5—C1163.7 (4)C1—Fe1—C10—C9164.4 (3)
C4—Fe1—C5—C1119.7 (4)C2—Fe1—C10—C9124.0 (3)
C7—Fe1—C5—C1117.4 (3)C3—Fe1—C10—C982.3 (3)
C8—Fe1—C5—C1160.1 (2)C4—Fe1—C10—C952.3 (5)
C10—Fe1—C5—C4155.3 (5)C7—Fe1—C10—C980.1 (3)
C6—Fe1—C5—C4166.3 (2)C8—Fe1—C10—C936.7 (3)
C1—Fe1—C5—C4119.7 (4)C5—Fe1—C10—C9168.7 (5)
C2—Fe1—C5—C482.0 (3)C1—Fe1—C10—C677.1 (3)
C3—Fe1—C5—C438.0 (3)C2—Fe1—C10—C6117.5 (2)
C9—Fe1—C5—C444.1 (6)C3—Fe1—C10—C6159.2 (2)
C7—Fe1—C5—C4123.0 (3)C9—Fe1—C10—C6118.5 (4)
C8—Fe1—C5—C480.2 (3)C4—Fe1—C10—C6170.8 (4)
C10—Fe1—C6—C7118.1 (3)C7—Fe1—C10—C638.4 (2)
C1—Fe1—C6—C7120.0 (2)C8—Fe1—C10—C681.8 (3)
C2—Fe1—C6—C7162.0 (2)C5—Fe1—C10—C650.3 (6)
C3—Fe1—C6—C7165.5 (4)C7—C6—C11—N1104.2 (4)
C9—Fe1—C6—C780.1 (3)C10—C6—C11—N182.1 (5)
C4—Fe1—C6—C749.6 (6)Fe1—C6—C11—N1169.0 (2)
C8—Fe1—C6—C736.8 (3)C13—N1—C11—C666.6 (4)
C5—Fe1—C6—C779.5 (3)C12—N1—C11—C654.9 (4)
C1—Fe1—C6—C10121.9 (3)C14—N1—C11—C6174.6 (3)
C2—Fe1—C6—C1079.8 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C9H15N)]ClO4
Mr357.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.5972 (17), 13.783 (3), 13.096 (3)
β (°) 101.23 (3)
V3)1522.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15527, 3479, 2642
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.07
No. of reflections3479
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.73

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Doctoral Foundation of Southeast University, China.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationPullen, A. E., Faulmann, C., Pokhodnya, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714–6720.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds