organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Iso­propyl­amino)-3-phen­­oxy­propan-2-ol

aDepartment of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: jyzhang2004@126.com

(Received 15 November 2011; accepted 6 January 2012; online 11 January 2012)

In the crystal structure of the title amino alcohol derivitive, C12H19NO2, mol­ecules are linked by N—H⋯O hydrogen bonds. The mol­ecular structure exhibits an intra­molecular O—H⋯N hydrogen bond.

Related literature

For applications of amino alcohols and their derivatives, see: Ellison et al. (2005[Ellison, K. E. & Gandhi, G. (2005). Drugs, pp. 787-797.]); Li et al. (2004[Li, Y., He, B., Qin, B., Feng, X. M. & Zhang, G. L. (2004). J. Org. Chem. pp. 7910-7913.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19NO2

  • Mr = 209.28

  • Tetragonal, [P \overline 42_1 c ]

  • a = 15.1162 (17) Å

  • c = 10.9448 (14) Å

  • V = 2500.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.45 × 0.38 × 0.37 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.973

  • 9624 measured reflections

  • 1252 independent reflections

  • 676 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.221

  • S = 1.16

  • 1252 reflections

  • 138 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 2.31 2.760 (7) 115
N1—H1⋯O2i 0.90 1.84 2.742 (7) 179
Symmetry code: (i) -y+1, x, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino alcohols are important structural elements for asymmetric catalysis(Li et al., 2004) as well as in biologically active compounds(Ellison et al., 2005). In order to develop new applications for amino alcohols and their derivatives, structural modifications of these compounds have been extensively investigated. As a contribution in this filed, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig.1.

The title compound crystallizes as the non–centrosymmetric space group P -421c in spite of having no asymmetric C atoms.

The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds (see, Table 1; second entry). The crystal packing (Fig. 2) is further stabilized by intramolecular O—H···N hydrogen bonds (see, Table 1; first entry).

Related literature top

For applications of amino alcohols and their derivatives, see: Ellison et al. (2005); Li et al. (2004).

Experimental top

To a solution of 2-(phenoxymethyl)oxirane (15.0 g, 0.1 mol) in acetone (200 ml), propan–2–amine (86.7 ml, 1.0 mol) was added. The mixture was stirred at room temperature for 6 h, followed by concentrated under reduced pressure and purification by crystallization from ethyl acetate, giving title compound as colourless single crystals suitabl for X-1ray analysis.

Refinement top

All the Friedel pairs were merged. All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5U eq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O and O—H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - y + 1, x, - z + 1 (ii) y, - x + 1, - z + 1 (iii) - x + 1, - y + 1, z. ]
1-(Isopropylamino)-3-phenoxypropan-2-ol top
Crystal data top
C12H19NO2Dx = 1.112 Mg m3
Mr = 209.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 2006 reflections
Hall symbol: P -4 2nθ = 2.3–19.8°
a = 15.1162 (17) ŵ = 0.08 mm1
c = 10.9448 (14) ÅT = 298 K
V = 2500.9 (5) Å3Block, colourless
Z = 80.45 × 0.38 × 0.37 mm
F(000) = 912
Data collection top
Bruker SMART CCD
diffractometer
1252 independent reflections
Radiation source: fine-focus sealed tube676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 179
Tmin = 0.967, Tmax = 0.973l = 713
9624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: difference Fourier map
wR(F2) = 0.221H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0662P)2 + 2.183P]
where P = (Fo2 + 2Fc2)/3
1252 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.24 e Å3
16 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H19NO2Z = 8
Mr = 209.28Mo Kα radiation
Tetragonal, P421cµ = 0.08 mm1
a = 15.1162 (17) ÅT = 298 K
c = 10.9448 (14) Å0.45 × 0.38 × 0.37 mm
V = 2500.9 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
1252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
676 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.973Rint = 0.125
9624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06416 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.16Δρmax = 0.24 e Å3
1252 reflectionsΔρmin = 0.25 e Å3
138 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5032 (3)0.6282 (4)0.7225 (4)0.0824 (15)
O20.3665 (3)0.6526 (3)0.5499 (4)0.0750 (14)
H20.32500.64510.50270.090*
N10.2523 (3)0.5115 (4)0.5235 (5)0.0700 (17)
H10.28310.46350.49990.084*
C10.4135 (5)0.6047 (5)0.7440 (7)0.074 (2)
H1C0.38130.65470.77740.089*
H1D0.41010.55610.80160.089*
C20.3755 (5)0.5783 (5)0.6253 (7)0.0639 (17)
H2A0.41510.53570.58580.077*
C30.2859 (4)0.5375 (5)0.6394 (7)0.0650 (19)
H3A0.28980.48630.69250.078*
H3B0.24590.57980.67680.078*
C40.1582 (5)0.4884 (6)0.5218 (7)0.099 (3)
H40.12420.53690.55830.119*
C50.1313 (6)0.4781 (9)0.3916 (9)0.145 (5)
H5A0.14310.53190.34810.218*
H5B0.06920.46500.38740.218*
H5C0.16420.43050.35530.218*
C60.1420 (7)0.4060 (7)0.5930 (11)0.152 (5)
H6A0.17650.35860.55920.228*
H6B0.08040.39090.58900.228*
H6C0.15880.41520.67660.228*
C70.5482 (4)0.6682 (5)0.8129 (7)0.072 (2)
C80.5118 (5)0.6915 (5)0.9248 (6)0.083 (2)
H80.45300.67900.94300.100*
C90.5660 (6)0.7339 (5)1.0086 (8)0.099 (3)
H90.54370.74951.08480.119*
C100.6534 (6)0.7533 (6)0.9800 (11)0.111 (4)
H100.68860.78311.03620.133*
C110.6867 (7)0.7298 (5)0.8730 (10)0.103 (3)
H110.74580.74180.85630.124*
C120.6357 (4)0.6876 (5)0.7852 (8)0.086 (2)
H120.65960.67270.70960.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.056 (3)0.109 (4)0.082 (3)0.016 (3)0.003 (3)0.020 (3)
O20.067 (3)0.077 (3)0.081 (3)0.001 (3)0.007 (3)0.005 (3)
N10.048 (3)0.070 (4)0.092 (4)0.002 (3)0.002 (3)0.025 (4)
C10.056 (4)0.088 (5)0.078 (5)0.013 (4)0.005 (4)0.009 (4)
C20.056 (4)0.064 (4)0.072 (4)0.001 (3)0.005 (4)0.003 (4)
C30.057 (4)0.062 (4)0.076 (5)0.008 (3)0.001 (4)0.009 (4)
C40.048 (4)0.110 (7)0.139 (8)0.012 (4)0.004 (5)0.040 (7)
C50.075 (6)0.211 (13)0.150 (9)0.007 (8)0.041 (7)0.060 (9)
C60.102 (8)0.157 (10)0.196 (13)0.066 (7)0.020 (8)0.001 (10)
C70.067 (5)0.066 (5)0.082 (5)0.004 (4)0.011 (4)0.002 (4)
C80.089 (6)0.080 (5)0.080 (5)0.011 (5)0.015 (5)0.012 (5)
C90.125 (8)0.079 (6)0.093 (6)0.005 (6)0.030 (6)0.001 (5)
C100.129 (10)0.077 (6)0.127 (9)0.017 (6)0.051 (8)0.007 (6)
C110.091 (7)0.078 (6)0.141 (9)0.024 (5)0.042 (7)0.001 (7)
C120.065 (5)0.081 (5)0.113 (6)0.011 (4)0.011 (5)0.003 (5)
Geometric parameters (Å, º) top
O1—C71.344 (8)C5—H5A0.9600
O1—C11.422 (8)C5—H5B0.9600
O2—C21.400 (8)C5—H5C0.9600
O2—H20.8200C6—H6A0.9600
N1—C31.422 (9)C6—H6B0.9600
N1—C41.464 (9)C6—H6C0.9600
N1—H10.9000C7—C81.388 (2)
C1—C21.475 (9)C7—C121.388 (2)
C1—H1C0.9700C8—C91.388 (2)
C1—H1D0.9700C8—H80.9300
C2—C31.497 (9)C9—C101.388 (2)
C2—H2A0.9800C9—H90.9300
C3—H3A0.9700C10—C111.323 (13)
C3—H3B0.9700C10—H100.9300
C4—C51.490 (8)C11—C121.388 (2)
C4—C61.490 (8)C11—H110.9300
C4—H40.9800C12—H120.9300
C7—O1—C1118.3 (6)C4—C5—H5B109.5
C2—O2—H2109.5H5A—C5—H5B109.5
C3—N1—C4115.1 (6)C4—C5—H5C109.5
C3—N1—H1107.1H5A—C5—H5C109.5
C4—N1—H1107.9H5B—C5—H5C109.5
O1—C1—C2107.1 (6)C4—C6—H6A109.5
O1—C1—H1C110.3C4—C6—H6B109.5
C2—C1—H1C110.3H6A—C6—H6B109.5
O1—C1—H1D110.3C4—C6—H6C109.5
C2—C1—H1D110.3H6A—C6—H6C109.5
H1C—C1—H1D108.6H6B—C6—H6C109.5
O2—C2—C1109.9 (6)O1—C7—C8124.3 (6)
O2—C2—C3107.7 (6)O1—C7—C12114.6 (6)
C1—C2—C3111.9 (6)C8—C7—C12121.1 (7)
O2—C2—H2A109.1C7—C8—C9117.8 (7)
C1—C2—H2A109.1C7—C8—H8121.1
C3—C2—H2A109.1C9—C8—H8121.1
N1—C3—C2110.2 (6)C10—C9—C8120.6 (8)
N1—C3—H3A109.6C10—C9—H9119.7
C2—C3—H3A109.6C8—C9—H9119.7
N1—C3—H3B109.6C11—C10—C9120.4 (10)
C2—C3—H3B109.6C11—C10—H10119.8
H3A—C3—H3B108.1C9—C10—H10119.8
N1—C4—C5107.6 (7)C10—C11—C12121.7 (10)
N1—C4—C6110.6 (7)C10—C11—H11119.2
C5—C4—C6111.5 (10)C12—C11—H11119.2
N1—C4—H4109.0C11—C12—C7118.4 (8)
C5—C4—H4109.0C11—C12—H12120.8
C6—C4—H4109.0C7—C12—H12120.8
C4—C5—H5A109.5
C7—O1—C1—C2169.4 (6)C1—O1—C7—C12179.0 (7)
O1—C1—C2—O270.2 (8)O1—C7—C8—C9178.9 (7)
O1—C1—C2—C3170.2 (6)C12—C7—C8—C90.6 (12)
C4—N1—C3—C2167.4 (6)C7—C8—C9—C100.9 (13)
O2—C2—C3—N160.3 (7)C8—C9—C10—C111.5 (15)
C1—C2—C3—N1178.9 (7)C9—C10—C11—C121.9 (16)
C3—N1—C4—C5170.6 (8)C10—C11—C12—C71.6 (14)
C3—N1—C4—C667.4 (10)O1—C7—C12—C11179.4 (7)
C1—O1—C7—C82.6 (11)C8—C7—C12—C110.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.822.312.760 (7)115
N1—H1···O2i0.901.842.742 (7)179
Symmetry code: (i) y+1, x, z+1.

Experimental details

Crystal data
Chemical formulaC12H19NO2
Mr209.28
Crystal system, space groupTetragonal, P421c
Temperature (K)298
a, c (Å)15.1162 (17), 10.9448 (14)
V3)2500.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.38 × 0.37
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
9624, 1252, 676
Rint0.125
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.221, 1.16
No. of reflections1252
No. of parameters138
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.822.312.760 (7)115.1
N1—H1···O2i0.901.842.742 (7)179.0
Symmetry code: (i) y+1, x, z+1.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of P. R. China (No. 20572103).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEllison, K. E. & Gandhi, G. (2005). Drugs, pp. 787–797.  Web of Science CrossRef Google Scholar
First citationLi, Y., He, B., Qin, B., Feng, X. M. & Zhang, G. L. (2004). J. Org. Chem. pp. 7910–7913.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds