organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(3-Methyl­phen­yl)sulfamo­yl]phen­yl}acetamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 30 December 2011; accepted 11 January 2012; online 18 January 2012)

In the title compound, C15H16N2O3S, the central C—S(=O)2N(H)—C unit is twisted, with a C—S—N—C torsion angle of −56.4 (2)°. The benzene rings form a dihedral angle of 49.65 (15)° with each other. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For background to sulfonamides, see: Ahmad et al. (2011a[Ahmad, S., Farrukh, M. A., Qureshi, F. A., Adnan, A. & Akkurt, M. (2011a). Acta Cryst. E67, o303-o304.],b[Ahmad, S., Farrukh, M. A., Qureshi, F. A., Faryal, K. & Akkurt, M. (2011b). Acta Cryst. E67, o1909.]); Faryal et al. (2011[Faryal, K., Farrukh, M. A., Qureshi, F. A., Ahmad, S., Adnan, A. & Akkurt, M. (2011). Acta Cryst. E67, o2100.]); Pandya et al. (2003[Pandya, R., Murashim, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274-8276.]); Singh & Bansal (2004[Singh, D. & Bansal, G. (2004). E J. Chem. 1, 164-169.]). For the crystal structure of the isomeric compound, N–{4–[(4–methyl­phen­yl)sulfamo­yl]phen­yl}acetamide, see: John et al. (2010[John, P., Khan, I. U., Sajjad, M. A., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2031.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O3S

  • Mr = 304.37

  • Orthorhombic, P b c a

  • a = 12.4072 (4) Å

  • b = 9.8528 (4) Å

  • c = 24.7872 (10) Å

  • V = 3030.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.13 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 27585 measured reflections

  • 3766 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.146

  • S = 1.02

  • 3766 reflections

  • 200 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.09 (2) 2.938 (3) 171 (2)
N2—H2N⋯O3ii 0.84 (2) 2.05 (2) 2.878 (3) 173 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are a diverse group of compounds having considerable medical importance (Pandya et al., 2003). They are the very important class of compounds in the pharmaceutical industry, being widely used as anticancer, anti-inflammatory and antiviral agents. They have been the center of drug structures as this group is quite stable and well tolerated in human beings (Singh & Bansal 2004). Compounds bearing sulfonate group increases their hydrophilicity and have become useful pharmacological tool. In continuation of on–going structural studies of sulfonamide derivatives (Faryal et al., 2011; Ahmad et al., 2011a,b), the crystal structure of title sulfonamide N–{4–[(3–methylphenyl)sulfamoyl]phenyl}acetamide is described herein.

The title compound, (Fig. 1) is a isomer of the compound, N–{4–[(4–methylphenyl)sulfamoyl]phenyl}acetamide, reported by John et al. (2010). The title compound crystallizes in the orthorhombic space group P bca with Z=8, while its mentioned-isomer crystallizes in triclinic space group P-1 with Z=2. The values of the geometric properties of both compounds are similar. The dihedral angle between the C3–C8 and C9–C14 benzene rings is 49.65 (15) °. In the central C—S(O)2N(H)—C unit of title compound, the C6—S1—N1—C9 torsion angle of -56.4 (2)° indicates a twist in the molecule. The amide group is not co–planar with the benzene ring to which it is attached [C2—N2—C3—C8 = 27.5 (5) °]. In the crystal structure, molecules are connected via N—H···O hydrogen bonds, generating a three–dimensional network (Table 1, Fig. 2).

Related literature top

For background to sulfonamides, see: Ahmad et al. (2011a,b); Faryal et al. (2011); Pandya et al. (2003); Singh & Bansal (2004). For the crystal structure of the isomeric compound, N–{4–[(4–methylphenyl)sulfamoyl]phenyl}acetamide, see: John et al. (2010).

Experimental top

5 mmol of m–toluidine was dissolved in 20 ml of distilled water then 5 mmol of 4–acetamidobenzenesulfonyl chloride was added. The reaction mixture was stirred for about 2–3 h while the pH of the reaction mixture was maintained between 8–10 using 3% Na2CO3. The reaction was monitored by TLC. The precipitate formed was filtered, washed with distilled water, dried and recrystallized by using methanol.

Refinement top

The NH H–atoms were located in a difference Fourier map. They were isotropically refined with a distance restraint: N—H = 0.86 (2) Å. The C–bound H–atoms were positioned geometrically [C—H = 0.93 and 0.96 Å., for aromatic and methyl H–atoms, respectively], and constrained to ride on their parent atoms, with Uiso=1.2Ueq (Caromatic) and Uiso=1.5Ueq (Cmethyl). In the final refinement one low angle reflection evidently effected by the beam stop was omitted, i.e. 0 0 2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non–participating in hydrogen- bonding were omitted for clarity. [Symmetry codes: (i) - x + 3/2, y - 1/2, z; (ii) - x + 1/2, y + 1/2, z; (iii) - x + 3/2, y + 1/2, z; (iv) - x + 1/2, y - 1/2, z.]
N-{4-[(3-Methylphenyl)sulfamoyl]phenyl}acetamide top
Crystal data top
C15H16N2O3SF(000) = 1280
Mr = 304.37Dx = 1.334 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2598 reflections
a = 12.4072 (4) Åθ = 2.8–26.1°
b = 9.8528 (4) ŵ = 0.23 mm1
c = 24.7872 (10) ÅT = 296 K
V = 3030.1 (2) Å3Plates, colourless
Z = 80.13 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2018 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.089
Graphite monochromatorθmax = 28.3°, θmin = 2.8°
ϕ and ω scansh = 1615
27585 measured reflectionsk = 1313
3766 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0559P)2 + 1.2606P]
where P = (Fo2 + 2Fc2)/3
3766 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H16N2O3SV = 3030.1 (2) Å3
Mr = 304.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.4072 (4) ŵ = 0.23 mm1
b = 9.8528 (4) ÅT = 296 K
c = 24.7872 (10) Å0.13 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2018 reflections with I > 2σ(I)
27585 measured reflectionsRint = 0.089
3766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
3766 reflectionsΔρmin = 0.34 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75972 (5)0.46076 (6)0.12164 (3)0.0386 (2)
O10.82358 (15)0.3853 (2)0.08468 (9)0.0510 (7)
O20.79502 (15)0.59357 (18)0.13737 (9)0.0477 (7)
O30.25638 (16)0.27762 (18)0.04342 (10)0.0573 (8)
N10.75422 (19)0.3683 (2)0.17624 (10)0.0407 (8)
N20.30625 (19)0.4969 (2)0.05052 (11)0.0424 (8)
C10.1211 (2)0.4459 (3)0.03050 (14)0.0536 (10)
C20.2336 (2)0.3979 (3)0.04182 (11)0.0400 (9)
C30.4142 (2)0.4837 (2)0.06584 (11)0.0362 (9)
C40.4594 (2)0.5905 (3)0.09375 (13)0.0505 (12)
C50.5659 (2)0.5860 (3)0.10976 (13)0.0501 (10)
C60.6270 (2)0.4738 (3)0.09778 (11)0.0362 (9)
C70.5827 (2)0.3668 (3)0.06968 (12)0.0448 (10)
C80.4762 (2)0.3707 (3)0.05379 (12)0.0442 (10)
C90.6853 (2)0.4104 (3)0.21957 (12)0.0425 (10)
C100.7132 (2)0.5202 (3)0.25144 (13)0.0494 (11)
C110.6485 (3)0.5624 (4)0.29349 (13)0.0593 (12)
C120.5563 (3)0.4898 (4)0.30367 (16)0.0723 (16)
C130.5285 (3)0.3793 (4)0.27305 (18)0.0780 (16)
C140.5919 (2)0.3389 (3)0.23047 (15)0.0596 (13)
C150.6791 (4)0.6837 (4)0.32666 (16)0.0900 (19)
H1A0.108600.445100.007700.0800*
H1B0.112400.536500.044000.0800*
H1C0.070500.386700.047900.0800*
H1N0.746 (2)0.2849 (18)0.1672 (10)0.034 (7)*
H2N0.283 (2)0.5766 (19)0.0497 (11)0.041 (8)*
H40.417800.666300.101900.0610*
H50.596100.658500.128500.0600*
H70.624900.291600.061400.0540*
H80.446200.298000.035100.0530*
H100.776900.566600.244400.0590*
H120.511800.516100.332000.0870*
H130.466000.331300.281100.0930*
H140.572400.264800.209400.0710*
H15A0.654400.764800.309100.1350*
H15B0.756100.687100.330500.1350*
H15C0.646500.677000.361700.1350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (3)0.0296 (3)0.0582 (5)0.0008 (3)0.0013 (3)0.0014 (3)
O10.0385 (11)0.0465 (12)0.0679 (14)0.0097 (10)0.0113 (10)0.0046 (10)
O20.0364 (10)0.0307 (10)0.0759 (15)0.0076 (9)0.0033 (10)0.0003 (10)
O30.0501 (13)0.0258 (11)0.0960 (18)0.0051 (10)0.0081 (12)0.0021 (10)
N10.0356 (13)0.0279 (12)0.0586 (16)0.0013 (11)0.0000 (12)0.0011 (11)
N20.0339 (13)0.0240 (12)0.0694 (17)0.0010 (10)0.0097 (12)0.0005 (11)
C10.0382 (16)0.0475 (18)0.075 (2)0.0051 (15)0.0110 (16)0.0012 (16)
C20.0397 (16)0.0319 (15)0.0485 (18)0.0043 (13)0.0039 (13)0.0016 (13)
C30.0316 (15)0.0260 (13)0.0509 (18)0.0009 (12)0.0003 (13)0.0017 (12)
C40.0342 (16)0.0254 (14)0.092 (3)0.0053 (13)0.0061 (16)0.0113 (15)
C50.0397 (16)0.0277 (14)0.083 (2)0.0017 (13)0.0079 (15)0.0133 (14)
C60.0267 (13)0.0298 (14)0.0521 (18)0.0010 (12)0.0003 (12)0.0001 (12)
C70.0384 (17)0.0301 (14)0.066 (2)0.0063 (13)0.0031 (15)0.0093 (13)
C80.0412 (16)0.0304 (14)0.061 (2)0.0004 (13)0.0070 (14)0.0103 (13)
C90.0302 (15)0.0436 (16)0.0537 (19)0.0049 (13)0.0024 (13)0.0037 (14)
C100.0444 (18)0.0487 (18)0.055 (2)0.0035 (15)0.0033 (15)0.0024 (16)
C110.062 (2)0.066 (2)0.050 (2)0.0162 (19)0.0014 (17)0.0035 (17)
C120.058 (2)0.096 (3)0.063 (3)0.015 (2)0.0167 (19)0.002 (2)
C130.045 (2)0.091 (3)0.098 (3)0.004 (2)0.019 (2)0.006 (3)
C140.0399 (18)0.058 (2)0.081 (3)0.0041 (16)0.0054 (18)0.0009 (18)
C150.107 (4)0.100 (3)0.063 (3)0.016 (3)0.001 (2)0.022 (2)
Geometric parameters (Å, º) top
S1—O11.421 (2)C10—C111.380 (5)
S1—O21.4339 (19)C11—C121.373 (5)
S1—N11.633 (2)C11—C151.500 (5)
S1—C61.754 (3)C12—C131.371 (6)
O3—C21.219 (3)C13—C141.375 (5)
N1—C91.434 (4)C1—H1A0.9600
N2—C21.346 (4)C1—H1B0.9600
N2—C31.398 (3)C1—H1C0.9600
N1—H1N0.858 (18)C4—H40.9300
N2—H2N0.84 (2)C5—H50.9300
C1—C21.500 (4)C7—H70.9300
C3—C81.386 (4)C8—H80.9300
C3—C41.379 (4)C10—H100.9300
C4—C51.380 (4)C12—H120.9300
C5—C61.373 (4)C13—H130.9300
C6—C71.378 (4)C14—H140.9300
C7—C81.379 (4)C15—H15A0.9600
C9—C141.383 (4)C15—H15B0.9600
C9—C101.384 (4)C15—H15C0.9600
O1—S1—O2118.84 (12)C11—C12—C13121.4 (4)
O1—S1—N1105.41 (12)C12—C13—C14120.7 (3)
O1—S1—C6110.14 (13)C9—C14—C13118.8 (3)
O2—S1—N1107.25 (12)C2—C1—H1A109.00
O2—S1—C6108.15 (13)C2—C1—H1B109.00
N1—S1—C6106.32 (13)C2—C1—H1C109.00
S1—N1—C9118.97 (18)H1A—C1—H1B109.00
C2—N2—C3128.2 (2)H1A—C1—H1C109.00
S1—N1—H1N108.8 (17)H1B—C1—H1C110.00
C9—N1—H1N113.7 (17)C3—C4—H4120.00
C2—N2—H2N116.5 (17)C5—C4—H4120.00
C3—N2—H2N115.1 (17)C4—C5—H5120.00
O3—C2—N2123.0 (2)C6—C5—H5120.00
O3—C2—C1121.9 (2)C6—C7—H7120.00
N2—C2—C1115.1 (2)C8—C7—H7120.00
N2—C3—C4117.1 (2)C3—C8—H8120.00
C4—C3—C8119.7 (2)C7—C8—H8120.00
N2—C3—C8123.2 (2)C9—C10—H10119.00
C3—C4—C5120.6 (3)C11—C10—H10119.00
C4—C5—C6119.5 (3)C11—C12—H12119.00
C5—C6—C7120.3 (2)C13—C12—H12119.00
S1—C6—C5120.3 (2)C12—C13—H13120.00
S1—C6—C7119.3 (2)C14—C13—H13120.00
C6—C7—C8120.3 (3)C9—C14—H14121.00
C3—C8—C7119.5 (3)C13—C14—H14121.00
N1—C9—C14119.9 (3)C11—C15—H15A110.00
C10—C9—C14119.8 (3)C11—C15—H15B110.00
N1—C9—C10120.3 (2)C11—C15—H15C110.00
C9—C10—C11121.4 (3)H15A—C15—H15B109.00
C10—C11—C12117.8 (3)H15A—C15—H15C109.00
C10—C11—C15120.5 (3)H15B—C15—H15C109.00
C12—C11—C15121.7 (3)
O1—S1—N1—C9173.3 (2)C8—C3—C4—C50.1 (4)
O2—S1—N1—C959.1 (2)C3—C4—C5—C60.1 (5)
C6—S1—N1—C956.4 (2)C4—C5—C6—C70.4 (4)
O2—S1—C6—C7166.2 (2)C4—C5—C6—S1175.7 (2)
N1—S1—C6—C778.9 (2)S1—C6—C7—C8175.5 (2)
O2—S1—C6—C517.6 (3)C5—C6—C7—C80.7 (4)
N1—S1—C6—C597.3 (3)C6—C7—C8—C30.6 (4)
O1—S1—C6—C5149.0 (2)N1—C9—C10—C11179.8 (3)
O1—S1—C6—C734.9 (3)C14—C9—C10—C111.4 (5)
S1—N1—C9—C1073.2 (3)N1—C9—C14—C13178.4 (3)
S1—N1—C9—C14108.4 (3)C10—C9—C14—C130.1 (5)
C2—N2—C3—C4153.2 (3)C9—C10—C11—C121.5 (5)
C3—N2—C2—O34.5 (5)C9—C10—C11—C15178.6 (3)
C2—N2—C3—C827.5 (5)C10—C11—C12—C130.4 (6)
C3—N2—C2—C1174.8 (3)C15—C11—C12—C13179.7 (4)
N2—C3—C4—C5179.2 (3)C11—C12—C13—C140.9 (6)
C4—C3—C8—C70.3 (4)C12—C13—C14—C91.1 (5)
N2—C3—C8—C7179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.09 (2)2.938 (3)171 (2)
N2—H2N···O3ii0.84 (2)2.05 (2)2.878 (3)173 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O3S
Mr304.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.4072 (4), 9.8528 (4), 24.7872 (10)
V3)3030.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.13 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27585, 3766, 2018
Rint0.089
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.146, 1.02
No. of reflections3766
No. of parameters200
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.858 (18)2.088 (19)2.938 (3)171 (2)
N2—H2N···O3ii0.84 (2)2.046 (19)2.878 (3)173 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: akhyar100@gmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University Lahore.

References

First citationAhmad, S., Farrukh, M. A., Qureshi, F. A., Adnan, A. & Akkurt, M. (2011a). Acta Cryst. E67, o303–o304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, S., Farrukh, M. A., Qureshi, F. A., Faryal, K. & Akkurt, M. (2011b). Acta Cryst. E67, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFaryal, K., Farrukh, M. A., Qureshi, F. A., Ahmad, S., Adnan, A. & Akkurt, M. (2011). Acta Cryst. E67, o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohn, P., Khan, I. U., Sajjad, M. A., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandya, R., Murashim, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274–8276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, D. & Bansal, G. (2004). E J. Chem. 1, 164–169.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds