organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{6-[1-(2,6-Di­methyl­phenyl­imino)­eth­yl]pyridin-2-yl}ethanone

aSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bDepartment of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
*Correspondence e-mail: qingzhao888@hotmail.com

(Received 16 December 2011; accepted 31 December 2011; online 11 January 2012)

In the title compound, C17H18N2O, the dijedral angle between the mean planes of the pyridine and benzene rings is 78.0 (1)°. In the crystal, pairs of C—H⋯O inter­actions with graph-set motif R22(10) form inversion dimers. Adjacent dimers are further connected into a three-dimensional network by C—H⋯O connections. There is also an inter­action between the carbonyl groups in adjacent mol­ecules with an O⋯C distance of 3.176 (2) Å.

Related literature

For the synthesis of mono- and bis­(imino)­pyridine ligands and catalytic applications of their metal complexes, see: Schmidt et al. (2002[Schmidt, R., Welch, M. B., Palackal, S. J. & Alt, H. G. (2002). J. Mol. Catal. A Chem. 179, 155-173.]); Bianchini et al. (2003[Bianchini, C., Mantovani, G., Meli, A., Migliacci, F., Zanobini, F., Laschi, F. & Sommazzi, A. (2003). Eur. J. Inorg. Chem. pp. 1620-1631.]); Britovsek et al. (1999[Britovsek, G. J. P., Gibson, V. C. & Wass, D. F. (1999). Angew. Chem. Int. Ed. 38, 428-447.]); Mecking et al. (2001[Mecking, S. (2001). Angew. Chem. Int. Ed. 40, 534-540.]); Gibson et al. (2007[Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745-1776.]). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O

  • Mr = 266.33

  • Triclinic, [P \overline 1]

  • a = 6.2988 (13) Å

  • b = 7.9684 (16) Å

  • c = 16.009 (3) Å

  • α = 99.57 (3)°

  • β = 96.40 (3)°

  • γ = 108.31 (3)°

  • V = 740.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.48 × 0.39 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.984

  • 7308 measured reflections

  • 3359 independent reflections

  • 2372 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.06

  • 3359 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.64 3.459 (2) 147
C9—H9C⋯O1ii 0.96 2.59 3.366 (2) 138
Symmetry codes: (i) -x-1, -y-1, -z+1; (ii) -x, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(imino)pyridine iron and cobalt complexes have been well-known as catalyst precursors for olefin oligomerization and polymerization. Considerable efforts have been focused on improving catalyst performance with a view to enhancing catalytic activity and control of the microstructure of the resulting polymer. (Britovsek, et al., 1999; Mecking, et al., 2001; Gibson, et al., 2007;) The nature of the bis(imino)pyridine ligands was found to be a crucial factor affecting the catalyst performance and it has also been shown that similar complexes of mono(imino)pyridine ligands can function as active catalysts (Bianchini et al., 2003).

In the title molecule, Fig. 1, the angle between the mean planes of the pyridine and benzene rings is 78.04 (6)°. In the crystal, there exist intermolecular C2—H2···O1 interactions with the graph-set motif R22(10) (Bernstein et al., 1995) which form a dimer (Fig.2 and Table 1). The adjacent dimers are connected into a 3-dimensional network by intermolecular C9—H9C···O1 interactions (Fig.2 and Table 1), and significant interactions between centrosymmetrically-related pairs of carbonyl groups (Allen, et al., 1998) in adjacent molecules with an O1···C6iii distance of 3.176 (2) Å and a C6=O1···C6iii angle of 93.48 (9)° [(iii) -x, -1-y, 1-z].

Related literature top

For the synthesis of mono- and bis(imino)pyridine ligands and catalytic applications of their metal complexes, see: Schmidt et al. (2002); Bianchini et al. (2003); Britovsek et al. (1999); Mecking et al. (2001); Gibson et al. (2007). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995). For carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

Compound (I) was prepared as described in the litererature (Schmidt et al., 2002; Bianchini et al., 2003) with 2,6-diacetylpyridine and 2,6-dimethylaniline as starting material. Crystals suitable for X-ray analysis were obtained by recrystallization from a petroleum ether solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 Å (aromatic carbon), and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I). Hydrogen bonds are indicated by dashed lines.
(E)-1-{6-[1-(2,6-Dimethylphenylimino)ethyl]pyridin-2-yl}ethanone top
Crystal data top
C17H18N2OZ = 2
Mr = 266.33F(000) = 284
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2988 (13) ÅCell parameters from 5656 reflections
b = 7.9684 (16) Åθ = 3.3–27.5°
c = 16.009 (3) ŵ = 0.08 mm1
α = 99.57 (3)°T = 293 K
β = 96.40 (3)°Block, yellow
γ = 108.31 (3)°0.48 × 0.39 × 0.21 mm
V = 740.6 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.965, Tmax = 0.984k = 1010
7308 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.080P)2 + 0.0412P]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C17H18N2Oγ = 108.31 (3)°
Mr = 266.33V = 740.6 (3) Å3
Triclinic, P1Z = 2
a = 6.2988 (13) ÅMo Kα radiation
b = 7.9684 (16) ŵ = 0.08 mm1
c = 16.009 (3) ÅT = 293 K
α = 99.57 (3)°0.48 × 0.39 × 0.21 mm
β = 96.40 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2372 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.017
7308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3359 reflectionsΔρmin = 0.13 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1379 (2)0.37717 (16)0.54963 (7)0.0681 (3)
N10.01368 (18)0.15963 (14)0.37828 (7)0.0422 (3)
N20.0626 (2)0.02226 (15)0.19274 (7)0.0471 (3)
C10.1418 (2)0.27314 (17)0.42051 (9)0.0434 (3)
C20.3694 (2)0.37081 (19)0.39062 (10)0.0531 (4)
H20.45360.44740.42200.064*
C30.4679 (3)0.3518 (2)0.31350 (11)0.0607 (4)
H30.62010.41710.29140.073*
C40.3396 (2)0.23533 (19)0.26906 (10)0.0524 (4)
H40.40380.22060.21680.063*
C50.1126 (2)0.14023 (16)0.30375 (8)0.0410 (3)
C60.0265 (3)0.28860 (19)0.50480 (9)0.0494 (3)
C70.2229 (3)0.1950 (2)0.53064 (10)0.0616 (4)
H7A0.27250.21480.58590.092*
H7B0.25780.06760.53380.092*
H7C0.29940.24210.48890.092*
C80.0334 (2)0.00400 (16)0.26111 (8)0.0410 (3)
C90.2751 (2)0.0919 (2)0.30375 (10)0.0543 (4)
H9A0.34390.18710.27530.081*
H9B0.35610.00780.30030.081*
H9C0.28060.14260.36300.081*
C100.0553 (2)0.15611 (17)0.14995 (8)0.0445 (3)
C110.0037 (2)0.31576 (18)0.15929 (9)0.0496 (3)
C120.1034 (3)0.4428 (2)0.11335 (11)0.0632 (4)
H120.07200.55020.11930.076*
C130.2480 (3)0.4132 (2)0.05903 (12)0.0746 (5)
H130.31280.49970.02830.090*
C140.2970 (3)0.2554 (3)0.05017 (12)0.0724 (5)
H140.39530.23660.01330.087*
C150.2030 (3)0.1238 (2)0.09492 (9)0.0545 (4)
C160.1539 (3)0.3483 (2)0.21889 (13)0.0713 (5)
H16A0.08270.36480.27730.107*
H16B0.29200.24600.20600.107*
H16C0.18790.45470.21140.107*
C170.2582 (4)0.0483 (2)0.08336 (12)0.0711 (5)
H17A0.27600.08260.02490.107*
H17B0.13700.14270.09660.107*
H17C0.39680.02940.12120.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0754 (8)0.0750 (7)0.0612 (6)0.0197 (6)0.0261 (6)0.0361 (6)
N10.0402 (6)0.0407 (6)0.0481 (6)0.0116 (5)0.0132 (5)0.0164 (5)
N20.0446 (6)0.0447 (6)0.0520 (6)0.0100 (5)0.0094 (5)0.0201 (5)
C10.0459 (7)0.0389 (6)0.0500 (7)0.0144 (6)0.0172 (6)0.0162 (5)
C20.0467 (8)0.0496 (8)0.0653 (9)0.0088 (6)0.0208 (7)0.0255 (7)
C30.0391 (8)0.0600 (9)0.0748 (10)0.0014 (6)0.0079 (7)0.0239 (8)
C40.0440 (8)0.0520 (8)0.0586 (8)0.0087 (6)0.0061 (6)0.0217 (7)
C50.0396 (7)0.0381 (6)0.0473 (7)0.0121 (5)0.0119 (5)0.0140 (5)
C60.0586 (9)0.0457 (7)0.0500 (7)0.0195 (6)0.0178 (6)0.0174 (6)
C70.0593 (10)0.0645 (9)0.0594 (9)0.0157 (8)0.0052 (7)0.0225 (7)
C80.0399 (7)0.0380 (6)0.0467 (7)0.0116 (5)0.0121 (5)0.0133 (5)
C90.0433 (8)0.0586 (8)0.0565 (8)0.0048 (6)0.0096 (6)0.0236 (7)
C100.0421 (7)0.0430 (7)0.0462 (7)0.0081 (6)0.0054 (6)0.0177 (6)
C110.0490 (8)0.0449 (7)0.0533 (8)0.0125 (6)0.0049 (6)0.0155 (6)
C120.0712 (11)0.0462 (8)0.0739 (10)0.0168 (7)0.0091 (8)0.0255 (7)
C130.0807 (13)0.0666 (11)0.0852 (12)0.0158 (9)0.0293 (10)0.0481 (9)
C140.0790 (12)0.0786 (11)0.0771 (11)0.0297 (10)0.0398 (10)0.0411 (9)
C150.0587 (9)0.0548 (8)0.0557 (8)0.0198 (7)0.0171 (7)0.0221 (7)
C160.0746 (12)0.0665 (10)0.0844 (12)0.0338 (9)0.0261 (9)0.0204 (9)
C170.0866 (13)0.0702 (11)0.0733 (11)0.0400 (10)0.0308 (9)0.0236 (9)
Geometric parameters (Å, º) top
O1—C61.2147 (17)C9—H9B0.9600
N1—C51.3386 (18)C9—H9C0.9600
N1—C11.3388 (16)C10—C111.3977 (19)
N2—C81.2712 (17)C10—C151.4022 (19)
N2—C101.4202 (16)C11—C121.382 (2)
C1—C21.383 (2)C11—C161.501 (2)
C1—C61.502 (2)C12—C131.373 (3)
C2—C31.372 (2)C12—H120.9300
C2—H20.9300C13—C141.375 (3)
C3—C41.377 (2)C13—H130.9300
C3—H30.9300C14—C151.384 (2)
C4—C51.389 (2)C14—H140.9300
C4—H40.9300C15—C171.506 (2)
C5—C81.4997 (17)C16—H16A0.9600
C6—C71.487 (2)C16—H16B0.9600
C7—H7A0.9600C16—H16C0.9600
C7—H7B0.9600C17—H17A0.9600
C7—H7C0.9600C17—H17B0.9600
C8—C91.494 (2)C17—H17C0.9600
C9—H9A0.9600
C5—N1—C1117.90 (12)H9A—C9—H9C109.5
C8—N2—C10121.37 (12)H9B—C9—H9C109.5
N1—C1—C2123.17 (13)C11—C10—C15121.17 (12)
N1—C1—C6116.46 (12)C11—C10—N2117.17 (12)
C2—C1—C6120.37 (12)C15—C10—N2121.46 (12)
C3—C2—C1118.35 (13)C12—C11—C10118.41 (14)
C3—C2—H2120.8C12—C11—C16121.22 (14)
C1—C2—H2120.8C10—C11—C16120.37 (13)
C2—C3—C4119.49 (14)C13—C12—C11121.19 (15)
C2—C3—H3120.3C13—C12—H12119.4
C4—C3—H3120.3C11—C12—H12119.4
C3—C4—C5118.80 (14)C12—C13—C14119.88 (14)
C3—C4—H4120.6C12—C13—H13120.1
C5—C4—H4120.6C14—C13—H13120.1
N1—C5—C4122.27 (12)C13—C14—C15121.44 (15)
N1—C5—C8116.15 (12)C13—C14—H14119.3
C4—C5—C8121.54 (12)C15—C14—H14119.3
O1—C6—C7121.86 (14)C14—C15—C10117.91 (14)
O1—C6—C1119.54 (14)C14—C15—C17120.26 (14)
C7—C6—C1118.60 (12)C10—C15—C17121.82 (13)
C6—C7—H7A109.5C11—C16—H16A109.5
C6—C7—H7B109.5C11—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
C6—C7—H7C109.5C11—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
N2—C8—C9125.99 (12)C15—C17—H17A109.5
N2—C8—C5116.51 (12)C15—C17—H17B109.5
C9—C8—C5117.47 (12)H17A—C17—H17B109.5
C8—C9—H9A109.5C15—C17—H17C109.5
C8—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5
C8—C9—H9C109.5
C5—N1—C1—C20.26 (19)N1—C5—C8—C91.94 (17)
C5—N1—C1—C6178.75 (11)C4—C5—C8—C9179.65 (12)
N1—C1—C2—C30.7 (2)C8—N2—C10—C11104.44 (15)
C6—C1—C2—C3179.71 (13)C8—N2—C10—C1580.74 (18)
C1—C2—C3—C40.9 (2)C15—C10—C11—C120.5 (2)
C2—C3—C4—C50.2 (2)N2—C10—C11—C12175.34 (13)
C1—N1—C5—C41.06 (19)C15—C10—C11—C16179.67 (15)
C1—N1—C5—C8176.62 (10)N2—C10—C11—C165.5 (2)
C3—C4—C5—N10.9 (2)C10—C11—C12—C130.7 (2)
C3—C4—C5—C8176.71 (12)C16—C11—C12—C13179.82 (18)
N1—C1—C6—O1173.71 (12)C11—C12—C13—C140.5 (3)
C2—C1—C6—O15.3 (2)C12—C13—C14—C150.1 (3)
N1—C1—C6—C76.63 (18)C13—C14—C15—C100.0 (3)
C2—C1—C6—C7174.33 (13)C13—C14—C15—C17179.49 (18)
C10—N2—C8—C92.1 (2)C11—C10—C15—C140.2 (2)
C10—N2—C8—C5176.01 (11)N2—C10—C15—C14174.78 (15)
N1—C5—C8—N2176.33 (11)C11—C10—C15—C17179.28 (15)
C4—C5—C8—N21.38 (18)N2—C10—C15—C174.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.643.459 (2)147
C9—H9C···O1ii0.962.593.366 (2)138
Symmetry codes: (i) x1, y1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O
Mr266.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2988 (13), 7.9684 (16), 16.009 (3)
α, β, γ (°)99.57 (3), 96.40 (3), 108.31 (3)
V3)740.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.39 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7308, 3359, 2372
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.06
No. of reflections3359
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.13

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.643.459 (2)147
C9—H9C···O1ii0.962.593.366 (2)138
Symmetry codes: (i) x1, y1, z+1; (ii) x, y, z+1.
 

Acknowledgements

We thank Jilin Province Science and Technology Division for financial support (grant Nos. 200505174; 20100751). We are also grateful for support by the Frontiers of Science and Inter­disciplinary Innovation Project of Jilin University (grant No. 450060445023).

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBianchini, C., Mantovani, G., Meli, A., Migliacci, F., Zanobini, F., Laschi, F. & Sommazzi, A. (2003). Eur. J. Inorg. Chem. pp. 1620–1631.  CSD CrossRef Google Scholar
First citationBritovsek, G. J. P., Gibson, V. C. & Wass, D. F. (1999). Angew. Chem. Int. Ed. 38, 428–447.  CrossRef CAS Google Scholar
First citationGibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMecking, S. (2001). Angew. Chem. Int. Ed. 40, 534–540.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchmidt, R., Welch, M. B., Palackal, S. J. & Alt, H. G. (2002). J. Mol. Catal. A Chem. 179, 155–173.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds