organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(1,4-Phenyl­ene)bis­­(4-chloro­butanamide)

aInstitute of Chemistry of the Academy of Sciences of Moldova, 3 Academiei Street, Chisinau MD-2028, Moldova, bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Moldova, cInstitute of Macromolecular Chemistry "Petru Poni", 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, and d"Alexandru Ioan Cuza" University, Organic Chemistry Department, 11 Carol I Boulevard, Iasi-700506, Romania
*Correspondence e-mail: olesea_cuzan@yahoo.com

(Received 25 November 2011; accepted 11 January 2012; online 18 January 2012)

The title mol­ecule, C14H18Cl2N2O2, lies on a crystallographic inversion center and the each 4-chloro­butanamide group adopts an anti-staggered conformation. In the crystal, adjacent mol­ecules are linked through N—H⋯O contacts, forming infinite ribbons extending parallel to the a axis.

Related literature

For details and syntheses of chloro­amides as precursors for new aza­macrocycles see: Benaglia et al. (2005[Benaglia, M., Guizzetti, S., Rigamonti, C. & Puglisi, A. (2005). Tetrahedron, 61, 12100-12106.]); Harte & Gunnlaugsson (2006[Harte, A. J. & Gunnlaugsson, T. (2006). Tetrahedron Lett. 47, 6321-6324.]); Humphrey & Chamberlin (1997[Humphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243-2266.]); Mangalagiu et al. (2007[Mangalagiu, I. I., Balan, A. M. & Florea, O. J. (2007). J Phys. Conf. Ser. 61, 482-483.]); Zbancioc et al. (2012[Zbancioc, G., Florea, O., Jones, P. G. & Mangalagiu, I. I. (2012). Ultrasonics Sonochem. 19, 399-403.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18Cl2N2O2

  • Mr = 317.20

  • Triclinic, [P \overline 1]

  • a = 5.105 (5) Å

  • b = 6.876 (5) Å

  • c = 10.549 (5) Å

  • α = 97.735 (5)°

  • β = 93.214 (5)°

  • γ = 90.512 (5)°

  • V = 366.3 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 200 K

  • 0.25 × 0.2 × 0.2 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]) Tmin = 0.914, Tmax = 1.000

  • 2575 measured reflections

  • 1446 independent reflections

  • 1189 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.03

  • 1446 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.10 2.941 (3) 161
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

With the aim of synthesizing new chloroamides as precursors for new azamacrocycles (Zbancioc et al., 2012), we report the synthesis and crystal structure of the title compound C14H18Cl2N2O2, which represents a diamide with aliphatic arms, consisting of two moieties of butyryl chloride and a phenylenediamine unit. Amides are important building blocks in preparative macrocycle chemistry (Harte & Gunnlaugsson, 2006), due to their spectroscopic proprieties as well as to their arms ability to coordinate to metal centers. The X-ray structure of the title compound with the atom numbering scheme is shown in Fig. 1. The molecule is assembled from two centro-symmetrically related units through the Ci at the center of the aromatic ring. The amide group is rotated by 32.4 (2)° in respect with the phenyl ring. The butyryl chloride fragment adopts an anti-staggered conformation. The main crystal structure motif arises from the parallel packing of the ribbon (Fig. 2) along the crystallographic a axis. The infinite ribbons are stabilized via intermolecular N1—H1···O1ii H-bond with N1—H1 = 0.88 Å, N1···O1ii = 2.941 (3) Å, [symmetry code ii: x–1, y, z], H1···O1ii = 2.10 Å and N1HO1 angle of 161°.

Related literature top

For details and syntheses of chloroamides as precursors for new azamacrocycles see: Benaglia et al. (2005); Harte & Gunnlaugsson (2006); Humphrey & Chamberlin (1997); Mangalagiu et al. (2007); Zbancioc et al. (2012).

Experimental top

p-Phenylenediamine (5 mmol, 0.54 g) was dissolved in sodium hydroxide solution (0.4 N, 50 ml) and 4-chlorobutyryl chloride (30 mmol, 3.4 ml) was added dropwise under stirring at 0° C for 1 h. Afterwards the mixture was stirred at room temperature overnight resulting in a white precipitate, which was separated by filtration, washed several times with water and dried in vacuum; yield 60%. The purity of N,N'-(1,4-phenylene)bis(4-chlorobutanamide) was confirmed by 1H and 13C NMR spectra.

1H NMR (DMSO-d6) δ (p.p.m.): 9.876 (s, 2NH), 7.492 (s, 4H, Ar), 3.675–3.708 (t, J = 6.8 Hz, 4H, CH2, adjacent to chlor), 2.433–2.469 (t, J = 7.2 Hz, 4H, CH2, adjacent to amido), 1.988–2.057 (c, J = 6.8 Hz J = 7.2 Hz, 4H, CH2).

13C NMR (DMSO-d6) δ (p.p.m.): 169.72 (2 C, CO), 134.46 (2 C, Ar), 119.37 (4 C, Ar), 44.97 (2 C, CH2, adjacent to chlor), 33.19 (2 C, CH2, adjacent to amido), 27.90 (2 C, CH2).

Refinement top

The H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of C14H18Cl2N2O2. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (i) –x, –y+1, –z+1.
[Figure 2] Fig. 2. Part of the crystal structure of C14H18Cl2N2O2. Molecular chains generated by N—H···O hydrogen bonds are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
N,N'-(1,4-Phenylene)bis(4-chlorobutanamide) top
Crystal data top
C14H18Cl2N2O2Z = 1
Mr = 317.20F(000) = 166
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.105 (5) ÅCell parameters from 1244 reflections
b = 6.876 (5) Åθ = 3.0–29.4°
c = 10.549 (5) ŵ = 0.45 mm1
α = 97.735 (5)°T = 200 K
β = 93.214 (5)°Prism, clear light yellow
γ = 90.512 (5)°0.25 × 0.2 × 0.2 mm
V = 366.3 (5) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
1446 independent reflections
Radiation source: fine-focus sealed tube1189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.1593 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 87
Tmin = 0.914, Tmax = 1.000l = 128
2575 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.0691P]
where P = (Fo2 + 2Fc2)/3
1446 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H18Cl2N2O2γ = 90.512 (5)°
Mr = 317.20V = 366.3 (5) Å3
Triclinic, P1Z = 1
a = 5.105 (5) ÅMo Kα radiation
b = 6.876 (5) ŵ = 0.45 mm1
c = 10.549 (5) ÅT = 200 K
α = 97.735 (5)°0.25 × 0.2 × 0.2 mm
β = 93.214 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
1446 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1189 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.026
2575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
1446 reflectionsΔρmin = 0.26 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29972 (11)0.27268 (9)1.02884 (5)0.0434 (2)
O10.4276 (2)0.1286 (2)0.67205 (14)0.0337 (4)
C50.0022 (3)0.3420 (3)0.57107 (17)0.0189 (4)
C60.1885 (3)0.4863 (3)0.58668 (18)0.0201 (4)
H60.31860.47680.64660.024*
N10.0077 (3)0.1862 (2)0.64528 (14)0.0207 (4)
H10.16450.14410.66070.025*
C20.3081 (3)0.2263 (3)0.77558 (18)0.0241 (4)
H2A0.29560.29230.68600.029*
H2B0.49260.18260.79660.029*
C10.2360 (4)0.3719 (3)0.86319 (19)0.0309 (5)
H1A0.33850.49270.84370.037*
H1B0.04760.40770.84770.037*
C40.2010 (3)0.0948 (3)0.69526 (18)0.0206 (4)
C30.1331 (3)0.0471 (3)0.78585 (18)0.0229 (4)
H3A0.05200.09090.76740.027*
H3B0.14980.02140.87480.027*
C70.1922 (3)0.3575 (3)0.48302 (17)0.0199 (4)
H70.32380.26100.47100.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0626 (4)0.0419 (3)0.0274 (3)0.0172 (3)0.0011 (3)0.0104 (2)
O10.0155 (7)0.0434 (9)0.0481 (9)0.0006 (6)0.0023 (6)0.0278 (7)
C50.0161 (8)0.0198 (9)0.0210 (10)0.0022 (7)0.0029 (7)0.0060 (8)
C60.0154 (8)0.0251 (10)0.0203 (9)0.0005 (7)0.0031 (7)0.0045 (8)
N10.0148 (7)0.0222 (8)0.0269 (9)0.0006 (6)0.0014 (6)0.0102 (7)
C20.0237 (9)0.0244 (10)0.0254 (10)0.0034 (8)0.0017 (8)0.0073 (8)
C10.0379 (11)0.0248 (11)0.0307 (12)0.0049 (8)0.0020 (9)0.0075 (9)
C40.0173 (9)0.0206 (10)0.0243 (10)0.0012 (7)0.0004 (7)0.0046 (8)
C30.0184 (8)0.0252 (10)0.0272 (10)0.0042 (7)0.0042 (8)0.0104 (8)
C70.0158 (8)0.0212 (9)0.0230 (10)0.0023 (7)0.0000 (7)0.0047 (8)
Geometric parameters (Å, º) top
Cl1—C11.799 (2)C2—C31.524 (3)
O1—C41.222 (2)C2—H2A0.9900
C5—C71.393 (2)C2—H2B0.9900
C5—C61.397 (3)C1—H1A0.9900
C5—N11.412 (2)C1—H1B0.9900
C6—C7i1.381 (3)C4—C31.505 (3)
C6—H60.9500C3—H3A0.9900
N1—C41.359 (2)C3—H3B0.9900
N1—H10.8800C7—C6i1.381 (3)
C2—C11.508 (3)C7—H70.9500
C7—C5—C6118.79 (17)Cl1—C1—H1A109.4
C7—C5—N1123.01 (16)C2—C1—H1B109.4
C6—C5—N1118.20 (16)Cl1—C1—H1B109.4
C7i—C6—C5121.48 (17)H1A—C1—H1B108.0
C7i—C6—H6119.3O1—C4—N1122.99 (17)
C5—C6—H6119.3O1—C4—C3122.17 (16)
C4—N1—C5126.45 (15)N1—C4—C3114.81 (15)
C4—N1—H1116.8C4—C3—C2112.75 (15)
C5—N1—H1116.8C4—C3—H3A109.0
C1—C2—C3113.03 (16)C2—C3—H3A109.0
C1—C2—H2A109.0C4—C3—H3B109.0
C3—C2—H2A109.0C2—C3—H3B109.0
C1—C2—H2B109.0H3A—C3—H3B107.8
C3—C2—H2B109.0C6i—C7—C5119.73 (17)
H2A—C2—H2B107.8C6i—C7—H7120.1
C2—C1—Cl1111.34 (14)C5—C7—H7120.1
C2—C1—H1A109.4
C7—C5—C6—C7i0.1 (3)C5—N1—C4—C3171.72 (16)
N1—C5—C6—C7i179.67 (15)O1—C4—C3—C237.8 (2)
C7—C5—N1—C435.9 (3)N1—C4—C3—C2144.32 (17)
C6—C5—N1—C4144.38 (18)C1—C2—C3—C4178.27 (15)
C3—C2—C1—Cl167.01 (19)C6—C5—C7—C6i0.1 (3)
C5—N1—C4—O16.1 (3)N1—C5—C7—C6i179.66 (16)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.882.102.941 (3)161
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H18Cl2N2O2
Mr317.20
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)5.105 (5), 6.876 (5), 10.549 (5)
α, β, γ (°)97.735 (5), 93.214 (5), 90.512 (5)
V3)366.3 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.25 × 0.2 × 0.2
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.914, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2575, 1446, 1189
Rint0.026
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.03
No. of reflections1446
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.102.941 (3)160.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This research was supported by PCAP FP7-PEOPLE-2009-IRSES (No. 246902) and the Development Fund, Sectoral Operational Programme "Increase of Economic Competitiveness", Priority Axis 2 (SOP IEC-A2-O2.1.2-2009-2, ID 570, COD SMIS-CSNR: 12473, Contract 129/2010-POLISILMET).

References

First citationAgilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.  Google Scholar
First citationBenaglia, M., Guizzetti, S., Rigamonti, C. & Puglisi, A. (2005). Tetrahedron, 61, 12100–12106.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarte, A. J. & Gunnlaugsson, T. (2006). Tetrahedron Lett. 47, 6321–6324.  Web of Science CrossRef CAS Google Scholar
First citationHumphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243–2266.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMangalagiu, I. I., Balan, A. M. & Florea, O. J. (2007). J Phys. Conf. Ser. 61, 482–483.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZbancioc, G., Florea, O., Jones, P. G. & Mangalagiu, I. I. (2012). Ultrasonics Sonochem. 19, 399–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds