metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­chlorido{2-dimeth­­oxy­methyl-4-methyl-6-[(quinolin-8-yl)imino­meth­yl]phenolato-κ3N,N′,O1}tin(IV)

aDepartment of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan
*Correspondence e-mail: shiba@chem.ous.ac.jp

(Received 11 January 2012; accepted 20 January 2012; online 31 January 2012)

In the title compound, [Sn(C20H19N2O3)Cl3], the SnIV ion is surrounded by a tridentate monoanionic Schiff base and by three meridional chloride ions in a six-coordinated distorted octa­hedral geometry. The Sn—Cl bond [2.366 (2) Å] trans to nitro­gen is shorter than the others [2.438 (2) and 2.414 (2) Å]. The N—Sn—N angle [76.19 (11)°] is smaller than the O—Sn—N angle [87.89 (10)°] in the Schiff base ligand. No classical inter­molecular hydrogen-bonding inter­actions are observed. The crystal packing exhibits ππ stacking inter­actions, with a distance of 3.595 (2) Å between the centroids of the phenolate ring and the benzene ring of the quinoline group of inversion-related mol­ecules.

Related literature

For a related structure, see: Takano & Shibahara (2008[Takano, K. & Shibahara, T. (2008). Chem. Lett. 37, 70-71.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C20H19N2O3)Cl3]

  • Mr = 560.43

  • Triclinic, [P \overline 1]

  • a = 7.213 (5) Å

  • b = 11.786 (8) Å

  • c = 13.197 (8) Å

  • α = 72.300 (13)°

  • β = 79.10 (3)°

  • γ = 89.89 (3)°

  • V = 1047.5 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 93 K

  • 0.23 × 0.22 × 0.11 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.779, Tmax = 0.836

  • 15965 measured reflections

  • 5989 independent reflections

  • 5512 reflections with F2 > 2σ(F2)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.04

  • 5989 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: CrystalClear (Rigaku, 2007)[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure .

Supporting information


Comment top

The title compound is a tin(IV) complex with a Schiff base ligand, which was obtained by the condensation reaction of 8-aminoquinoline with 2-hydroxy-5-methylisophthalaldehyde. The synthetic method of the complex was reported, and the 1H NMR spectrum in DMSO-d6 revealed that the formyl group of the aldehyde changed to the acetal group on coordination to tin(IV) (Takano & Shibahara, 2008).

In this paper, we report the X-ray analysis of the title compound using a different synthetic method from the previous one: 1) acetylacetone tin(IV) dichloride salt, SnIVCl2(C5H7O2)2, was used in place of SnCl4.5H2O. 2) the new method does not require heating. 3) tetrabutyl ammonium chloride was added to supply chloride ion. The new method gives orange block crystals of the title compound by slow ligand exchange reaction from acetylacetonate to Schiff base, while the previous method gives yellow powder by heating at 60°C for 2~3 h. The 1H NMR spectrum of the crystals is identical to that of the yellow powder.

In the X-ray structure, the tin(IV) complex has a six-coordinated distorted octahedral geometry coordinated by a tridentate monoanionic Schiff base and by three meridional chloride ions (Fig. 1). The difference in trans influence between imino N and Cl induces different Sn1—Cl distances [Sn1—Cl1, 2.438 (2) Å; Sn1—Cl2, 2.414 (2) Å; Sn1—Cl3, 2.366 (2) Å]. The N1—Sn1—N2 angle [76.20 (11)°] is smaller than the O1—Sn—N1 angle [87.89 (10)°] in the Schiff base ligand. Although no intermolecular interaction via hydrogen bonding was observed in the crystal packing, the crystal packing exhibits π-π stacking interactions with a distance of 3.595 (2) Å between the centroids of aromatic rings (Fig. 2).

Related literature top

For a related structure, see: Takano & Shibahara (2008).

Experimental top

To a solution of acetylacetone tin(IV) dichloride salt, SnIVCl2(C5H7O2)2 (50.24 mg, 0.13 mmol) in methanol (60 ml) was added tetrabutyl ammonium chloride (36.72 mg, 0.13 mmol). To the methanol solution was added 8-aminoquinoline (19.09 mg, 0.13 mmol) and 2-hydroxy-5-methylisophthalaldehyde (21.58 mg, 0.13 mmol). Orange block single crystals of title compound suitable for X-ray analysis were obtained after leaving the solution to stand for three weeks at room temperature in the dark.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H 0.98–1.06 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title molecule showing the intermolecular π-π stacking interactions.
Trichlorido{2-dimethoxymethyl-4-methyl-6-[(quinolin-8- yl)iminomethyl]phenolato-κ3N,N',O1}tin(IV) top
Crystal data top
[Sn(C20H19N2O3)Cl3]Z = 2
Mr = 560.43F(000) = 556.00
Triclinic, P1Dx = 1.777 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.213 (5) ÅCell parameters from 3411 reflections
b = 11.786 (8) Åθ = 3.0–30.0°
c = 13.197 (8) ŵ = 1.63 mm1
α = 72.300 (13)°T = 93 K
β = 79.10 (3)°Block, orange
γ = 89.89 (3)°0.23 × 0.22 × 0.11 mm
V = 1047.5 (13) Å3
Data collection top
Rigaku Mercury70
diffractometer
5512 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.020
ω scansθmax = 30.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.779, Tmax = 0.836k = 1616
15965 measured reflectionsl = 1818
5989 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.612P]
where P = (Fo2 + 2Fc2)/3
5989 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 1.24 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Sn(C20H19N2O3)Cl3]γ = 89.89 (3)°
Mr = 560.43V = 1047.5 (13) Å3
Triclinic, P1Z = 2
a = 7.213 (5) ÅMo Kα radiation
b = 11.786 (8) ŵ = 1.63 mm1
c = 13.197 (8) ÅT = 93 K
α = 72.300 (13)°0.23 × 0.22 × 0.11 mm
β = 79.10 (3)°
Data collection top
Rigaku Mercury70
diffractometer
5989 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
5512 reflections with F2 > 2σ(F2)
Tmin = 0.779, Tmax = 0.836Rint = 0.020
15965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 1.51 e Å3
5989 reflectionsΔρmin = 1.24 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn(1)0.07267 (3)0.182356 (18)0.625513 (16)0.02282 (7)
Cl(1)0.16518 (12)0.22042 (7)0.51208 (7)0.03006 (17)
Cl(2)0.32132 (14)0.15729 (8)0.72856 (8)0.03575 (19)
Cl(3)0.00261 (13)0.02600 (8)0.67936 (7)0.03285 (18)
O(1)0.1098 (4)0.2240 (2)0.74212 (19)0.0276 (5)
O(2)0.4558 (3)0.21297 (19)1.02744 (18)0.0231 (5)
O(3)0.2056 (4)0.1011 (2)0.97814 (19)0.0246 (5)
N(1)0.1674 (4)0.3725 (3)0.5581 (2)0.0215 (5)
N(2)0.2821 (4)0.1915 (3)0.4789 (3)0.0240 (5)
C(1)0.1026 (5)0.3198 (3)0.7750 (3)0.0210 (6)
C(2)0.2156 (5)0.3123 (3)0.8775 (3)0.0206 (6)
C(3)0.2263 (5)0.4110 (3)0.9135 (3)0.0223 (6)
C(4)0.1290 (5)0.5215 (3)0.8520 (3)0.0234 (6)
C(5)0.0184 (5)0.5282 (3)0.7533 (3)0.0232 (6)
C(6)0.0000 (5)0.4288 (3)0.7132 (3)0.0215 (6)
C(7)0.1235 (5)0.4495 (3)0.6099 (3)0.0227 (6)
C(8)0.2986 (5)0.4024 (3)0.4576 (3)0.0223 (6)
C(9)0.3711 (5)0.5165 (3)0.3962 (3)0.0259 (6)
C(10)0.4961 (5)0.5361 (4)0.2956 (3)0.0278 (7)
C(11)0.5496 (5)0.4427 (4)0.2568 (3)0.0290 (7)
C(12)0.4818 (5)0.3242 (4)0.3181 (3)0.0264 (7)
C(13)0.5331 (5)0.2226 (4)0.2848 (3)0.0318 (8)
C(14)0.4610 (6)0.1114 (4)0.3480 (3)0.0322 (8)
C(15)0.3317 (5)0.0988 (3)0.4450 (3)0.0284 (7)
C(16)0.3541 (5)0.3044 (3)0.4182 (3)0.0229 (6)
C(21)0.3243 (5)0.1943 (3)0.9417 (3)0.0209 (6)
C(22)0.5839 (5)0.1104 (3)1.0820 (3)0.0277 (7)
C(23)0.0791 (6)0.1254 (4)1.0415 (4)0.0346 (8)
C(41)0.1489 (6)0.6271 (3)0.8946 (3)0.0311 (7)
H(1)0.39560.16560.88990.0251*
H(3)0.30080.40550.98110.0267*
H(5)0.04570.59730.71460.0278*
H(7)0.17510.53180.57710.0273*
H(9)0.33600.58380.41690.0310*
H(10)0.53390.61260.25700.0333*
H(11)0.62990.45560.18920.0348*
H(13)0.60570.23850.21850.0382*
H(14)0.49730.04350.32800.0387*
H(15)0.26920.02230.48540.0340*
H(22A)0.51240.04141.11150.0415*
H(22B)0.65310.09381.03040.0415*
H(22C)0.67360.12591.14130.0415*
H(23A)0.15220.14031.10630.0520*
H(23B)0.00410.19590.99830.0520*
H(23C)0.00260.05671.06340.0520*
H(41A)0.20170.69230.84420.0467*
H(41B)0.02440.65380.90120.0467*
H(41C)0.23350.60390.96590.0467*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn(1)0.02655 (12)0.01881 (11)0.02224 (11)0.00370 (8)0.00058 (8)0.00837 (8)
Cl(1)0.0309 (4)0.0267 (4)0.0341 (4)0.0029 (3)0.0042 (3)0.0130 (3)
Cl(2)0.0421 (5)0.0302 (4)0.0358 (5)0.0084 (4)0.0096 (4)0.0102 (4)
Cl(3)0.0382 (5)0.0279 (4)0.0325 (4)0.0000 (4)0.0018 (4)0.0125 (3)
O(1)0.0318 (12)0.0210 (11)0.0291 (12)0.0022 (9)0.0083 (10)0.0150 (9)
O(2)0.0215 (11)0.0200 (10)0.0275 (11)0.0003 (8)0.0030 (9)0.0116 (9)
O(3)0.0255 (11)0.0207 (10)0.0301 (12)0.0047 (9)0.0053 (9)0.0116 (9)
N(1)0.0207 (12)0.0181 (11)0.0227 (12)0.0018 (9)0.0004 (10)0.0046 (9)
N(2)0.0248 (13)0.0240 (13)0.0233 (12)0.0056 (10)0.0009 (10)0.0098 (10)
C(1)0.0198 (13)0.0189 (13)0.0258 (14)0.0030 (11)0.0024 (11)0.0104 (11)
C(2)0.0210 (14)0.0201 (13)0.0220 (13)0.0040 (11)0.0030 (11)0.0091 (11)
C(3)0.0210 (14)0.0227 (14)0.0237 (14)0.0036 (11)0.0019 (11)0.0095 (11)
C(4)0.0222 (14)0.0196 (13)0.0320 (16)0.0049 (11)0.0053 (12)0.0133 (12)
C(5)0.0217 (14)0.0176 (13)0.0306 (15)0.0023 (11)0.0031 (12)0.0093 (12)
C(6)0.0199 (14)0.0184 (13)0.0270 (14)0.0046 (11)0.0022 (11)0.0095 (11)
C(7)0.0199 (14)0.0202 (14)0.0264 (14)0.0037 (11)0.0030 (11)0.0056 (11)
C(8)0.0200 (14)0.0228 (14)0.0224 (14)0.0051 (11)0.0017 (11)0.0060 (11)
C(9)0.0220 (15)0.0271 (16)0.0264 (15)0.0040 (12)0.0025 (12)0.0067 (12)
C(10)0.0209 (15)0.0316 (17)0.0257 (15)0.0004 (13)0.0032 (12)0.0022 (13)
C(11)0.0212 (15)0.0399 (19)0.0225 (15)0.0030 (13)0.0015 (12)0.0065 (13)
C(12)0.0220 (15)0.0369 (17)0.0211 (14)0.0052 (13)0.0037 (11)0.0104 (13)
C(13)0.0283 (17)0.044 (2)0.0242 (15)0.0100 (15)0.0007 (13)0.0153 (15)
C(14)0.0365 (19)0.0353 (18)0.0289 (17)0.0123 (15)0.0043 (14)0.0172 (14)
C(15)0.0320 (17)0.0274 (16)0.0269 (15)0.0093 (13)0.0035 (13)0.0117 (13)
C(16)0.0195 (14)0.0278 (15)0.0211 (13)0.0076 (12)0.0030 (11)0.0076 (12)
C(21)0.0188 (13)0.0199 (13)0.0245 (14)0.0041 (11)0.0013 (11)0.0093 (11)
C(22)0.0238 (15)0.0247 (15)0.0335 (17)0.0019 (12)0.0049 (13)0.0137 (13)
C(23)0.0349 (19)0.0319 (18)0.047 (2)0.0103 (15)0.0187 (16)0.0195 (16)
C(41)0.0338 (18)0.0229 (15)0.0400 (19)0.0008 (13)0.0019 (15)0.0178 (14)
Geometric parameters (Å, º) top
Sn1—Cl12.4382 (16)C9—C101.411 (5)
Sn1—Cl22.4143 (17)C10—C111.374 (6)
Sn1—Cl32.3660 (19)C11—C121.417 (5)
Sn1—O12.008 (3)C12—C131.422 (6)
Sn1—N12.201 (3)C12—C161.416 (5)
Sn1—N22.192 (3)C13—C141.363 (5)
O1—C11.332 (5)C14—C151.402 (5)
O2—C211.404 (4)C3—H30.934
O2—C221.434 (4)C5—H50.893
O3—C211.415 (4)C7—H70.976
O3—C231.432 (6)C9—H90.934
N1—C71.297 (5)C10—H100.903
N1—C81.421 (4)C11—H110.937
N2—C151.326 (6)C13—H130.895
N2—C161.370 (4)C14—H140.938
C1—C21.418 (5)C15—H150.958
C1—C61.415 (4)C21—H11.059
C2—C31.381 (5)C22—H22A0.980
C2—C211.517 (4)C22—H22B0.980
C3—C41.412 (4)C22—H22C0.980
C4—C51.373 (5)C23—H23A0.980
C4—C411.511 (6)C23—H23B0.980
C5—C61.421 (6)C23—H23C0.980
C6—C71.432 (5)C41—H41A0.980
C8—C91.385 (5)C41—H41B0.980
C8—C161.431 (6)C41—H41C0.980
Sn1···C63.443 (4)C11···H5vii3.0309
Cl3···C153.440 (4)C11···H7vii3.2990
O1···O32.954 (4)C12···H5vii3.4451
O1···C73.004 (4)C12···H41Avi3.2550
O1···C212.712 (4)C13···H22Cviii3.0812
O2···C32.718 (4)C13···H23Aviii3.3162
O2···C232.923 (5)C13···H41Avi3.1795
O3···C13.072 (4)C14···H15ix3.2562
O3···C33.499 (5)C14···H22Aviii3.4349
O3···C222.830 (5)C14···H22Cviii3.0215
N1···C13.032 (5)C15···H14ix3.4122
N2···C132.767 (5)C15···H15ix3.3697
C1···C42.847 (6)C21···H10vi3.4918
C2···C52.790 (5)C21···H22Aiv3.3328
C2···C232.899 (5)C21···H22Biv3.3030
C3···C62.780 (5)C22···H1iv3.1603
C3···C233.538 (5)C22···H13ii3.1609
C7···C92.917 (5)C22···H14ii3.2658
C8···C112.820 (5)C22···H22Aiv3.5069
C9···C122.818 (6)C22···H22Biv3.4792
C10···C162.797 (5)C22···H23Bxiii3.4086
C12···C152.767 (5)C22···H23Cxiii3.1561
C14···C162.763 (6)C22···H41Aiii3.0891
C22···C233.575 (6)C22···H41Ciii3.5326
Cl3···C15i3.406 (5)C23···H13ii3.5034
O2···C13ii3.418 (6)C23···H22Bx3.0754
O2···C41iii3.576 (5)C23···H22Cx3.4270
O3···C22iv3.289 (5)C23···H23Cv2.8923
O3···C23v3.407 (5)C23···H41Bxii3.0520
N1···C7vi3.554 (5)C41···H22Ciii3.1160
C1···C9vi3.402 (5)C41···H23Axii3.4958
C1···C10vi3.439 (5)C41···H23Bxii3.1304
C2···C10vi3.428 (5)H1···Cl2xiii3.2377
C3···C10vi3.573 (6)H1···C22iv3.1603
C4···C11vi3.566 (6)H1···H10vi3.0369
C5···C11vii3.372 (6)H1···H22Aiv2.5356
C6···C8vi3.574 (5)H1···H22Biv2.9587
C6···C9vi3.249 (6)H3···H11ii2.9332
C7···N1vi3.554 (5)H3···H13ii3.0994
C7···C7vi3.585 (6)H3···H41Bxii3.0192
C7···C10vii3.246 (6)H3···H41Ciii3.2938
C8···C6vi3.574 (5)H5···Cl1vi3.0708
C9···C1vi3.402 (5)H5···C11vii3.0309
C9···C6vi3.249 (6)H5···C12vii3.4451
C9···C9vii3.519 (6)H5···H11vii2.8481
C10···C1vi3.439 (5)H5···H13vii3.5693
C10···C2vi3.428 (5)H7···Cl1vi2.8031
C10···C3vi3.573 (6)H7···N1vi3.3148
C10···C7vii3.246 (6)H7···C7vi3.5286
C11···C4vi3.566 (6)H7···C8vi3.5846
C11···C5vii3.372 (6)H7···C9vii3.3861
C13···O2viii3.418 (6)H7···C10vii3.1259
C13···C22viii3.555 (7)H7···C11vii3.2990
C14···C22viii3.589 (6)H7···H10vii3.3998
C15···Cl3i3.406 (5)H9···Cl1vi2.9307
C15···C15ix3.561 (6)H9···O1vi3.2541
C22···O3iv3.289 (5)H9···C1vi3.2249
C22···C13ii3.555 (7)H9···C6vi3.2517
C22···C14ii3.589 (6)H9···C7vi3.4348
C23···O3v3.407 (5)H9···C8vii3.3950
C23···C23v3.567 (7)H9···C9vii3.4819
C41···O2iii3.576 (5)H10···Cl2vii2.9803
Sn1···H153.1788H10···N1vii3.5888
Cl3···H152.7979H10···C1vi3.2819
O1···H12.4890H10···C2vi3.1272
O1···H23B3.5467H10···C3vi3.5113
O2···H32.3835H10···C6vii3.4747
O2···H23A2.6315H10···C7vii3.2530
O2···H23B3.2795H10···C21vi3.4918
O3···H22A2.5036H10···H1vi3.0369
O3···H22B3.1662H10···H7vii3.3998
N1···H92.7348H11···C4vii3.5357
N2···H143.2179H11···C5vii3.0592
C1···H12.6825H11···H3viii2.9332
C1···H33.2639H11···H5vii2.8481
C1···H53.2529H11···H41Bvii3.2889
C1···H73.3394H11···H41Cviii2.9130
C1···H23B3.1049H13···O2viii2.7444
C2···H23A3.1988H13···C22viii3.1609
C2···H23B2.5593H13···C23viii3.5034
C3···H13.2644H13···H3viii3.0994
C3···H53.1823H13···H5vii3.5693
C3···H23A3.5367H13···H22Aviii3.2521
C3···H23B3.0662H13···H22Cviii2.9099
C3···H41A3.1554H13···H23Aviii2.5762
C3···H41B3.1593H13···H41Avi3.2147
C3···H41C2.5674H13···H41Bvii3.1965
C5···H33.2142H14···Cl2ix2.9259
C5···H72.4637H14···Cl3ix3.5973
C5···H41A2.7804H14···C15ix3.4122
C5···H41B2.7800H14···C22viii3.2658
C5···H41C3.3087H14···H15ix3.1470
C7···H52.5358H14···H22Aviii2.8791
C7···H92.7237H14···H22Cviii2.8675
C8···H72.5553H14···H23Aviii3.3818
C8···H103.2184H15···Cl1i2.9475
C9···H72.5905H15···Cl3i3.1825
C9···H113.2749H15···C14ix3.2562
C11···H93.2400H15···C15ix3.3697
C11···H132.6214H15···H14ix3.1470
C12···H103.2507H15···H15ix3.4444
C12···H143.2738H22A···Cl2v3.1499
C13···H112.6807H22A···O3iv3.2379
C13···H153.2430H22A···C14ii3.4349
C15···H133.2149H22A···C21iv3.3328
C16···H93.2896H22A···C22iv3.5069
C16···H113.2760H22A···H1iv2.5356
C16···H133.2054H22A···H13ii3.2521
C16···H153.1978H22A···H14ii2.8791
C21···H32.7048H22A···H22Aiv3.3440
C21···H22A2.5520H22A···H22Biv2.9030
C21···H22B2.5528H22B···O3iv2.5561
C21···H22C3.1846H22B···C21iv3.3030
C21···H23A2.6156H22B···C22iv3.4792
C21···H23B2.6165H22B···C23xiii3.0754
C21···H23C3.2261H22B···H1iv2.9587
C22···H12.5279H22B···H22Aiv2.9030
C22···H23A3.2207H22B···H22Biv3.2856
C23···H13.2540H22B···H23Bxiii2.7957
C23···H33.5994H22B···H23Cxiii2.4914
C23···H22A3.1568H22B···H41Aiii3.4733
C41···H32.6551H22C···Cl3iv2.9685
C41···H52.6417H22C···C13ii3.0812
H1···H33.5070H22C···C14ii3.0215
H1···H22A2.8057H22C···C23xiii3.4270
H1···H22B2.3138H22C···C41iii3.1160
H1···H22C3.4335H22C···H13ii2.9099
H1···H23A3.5643H22C···H14ii2.8675
H1···H23B3.5155H22C···H23Axiii3.5648
H3···H23A3.3418H22C···H23Bxiii3.2169
H3···H23B3.2895H22C···H23Cxiii2.9647
H3···H41A3.3170H22C···H41Aiii2.3690
H3···H41B3.3166H22C···H41Biii3.3694
H3···H41C2.3288H22C···H41Ciii3.1940
H5···H72.2295H23A···Cl2v3.5919
H5···H41A2.7139H23A···Cl3v3.1320
H5···H41B2.6993H23A···C13ii3.3162
H5···H41C3.5623H23A···C41xii3.4958
H7···H92.1154H23A···H13ii2.5762
H9···H102.2441H23A···H14ii3.3818
H10···H112.3396H23A···H22Cx3.5648
H11···H132.4698H23A···H41Axii3.5024
H13···H142.3537H23A···H41Bxii2.7087
H14···H152.3407H23B···C22x3.4086
H22A···H23A2.8302H23B···C41xii3.1304
Cl1···H5vi3.0708H23B···H22Bx2.7957
Cl1···H7vi2.8031H23B···H22Cx3.2169
Cl1···H9vi2.9307H23B···H23Cv3.3169
Cl1···H15i2.9475H23B···H41Axii3.2986
Cl2···H1x3.2377H23B···H41Bxii2.5342
Cl2···H10vii2.9803H23B···H41Cxii3.0848
Cl2···H14ix2.9259H23C···Cl2v3.5506
Cl2···H22Av3.1499H23C···Cl3v3.3025
Cl2···H23Av3.5919H23C···O3v2.5118
Cl2···H23Cv3.5506H23C···C22x3.1561
Cl3···H14ix3.5973H23C···C23v2.8923
Cl3···H15i3.1825H23C···H22Bx2.4914
Cl3···H22Civ2.9685H23C···H22Cx2.9647
Cl3···H23Av3.1320H23C···H23Bv3.3169
Cl3···H23Cv3.3025H23C···H23Cv2.4340
Cl3···H41Axi3.5133H23C···H41Bxii3.5922
O1···H9vi3.2541H41A···Cl3xiv3.5133
O2···H13ii2.7444H41A···O2iii3.1263
O2···H41Aiii3.1263H41A···C12vi3.2550
O2···H41Ciii3.1164H41A···C13vi3.1795
O3···H22Aiv3.2379H41A···C22iii3.0891
O3···H22Biv2.5561H41A···H13vi3.2147
O3···H23Cv2.5118H41A···H22Biii3.4733
N1···H7vi3.3148H41A···H22Ciii2.3690
N1···H10vii3.5888H41A···H23Axii3.5024
C1···H9vi3.2249H41A···H23Bxii3.2986
C1···H10vi3.2819H41B···C3xii3.2191
C2···H10vi3.1272H41B···C23xii3.0520
C3···H10vi3.5113H41B···H3xii3.0192
C3···H41Bxii3.2191H41B···H11vii3.2889
C4···H11vii3.5357H41B···H13vii3.1965
C5···H11vii3.0592H41B···H22Ciii3.3694
C6···H9vi3.2517H41B···H23Axii2.7087
C6···H10vii3.4747H41B···H23Bxii2.5342
C7···H7vi3.5286H41B···H23Cxii3.5922
C7···H9vi3.4348H41C···O2iii3.1164
C7···H10vii3.2530H41C···C22iii3.5326
C8···H7vi3.5846H41C···H3iii3.2938
C8···H9vii3.3950H41C···H11ii2.9130
C9···H7vii3.3861H41C···H22Ciii3.1940
C9···H9vii3.4819H41C···H23Bxii3.0848
C10···H7vii3.1259
Cl1—Sn1—Cl2175.84 (3)C12—C13—C14120.5 (4)
Cl1—Sn1—Cl391.63 (4)C13—C14—C15119.1 (4)
Cl1—Sn1—O189.63 (10)N2—C15—C14121.9 (3)
Cl1—Sn1—N188.80 (9)N2—C16—C8119.1 (3)
Cl1—Sn1—N287.42 (10)N2—C16—C12120.7 (4)
Cl2—Sn1—Cl391.91 (5)C8—C16—C12120.3 (3)
Cl2—Sn1—O191.92 (10)O2—C21—O3112.4 (3)
Cl2—Sn1—N187.40 (9)O2—C21—C2108.0 (3)
Cl2—Sn1—N290.04 (10)O3—C21—C2113.1 (3)
Cl3—Sn1—O199.80 (8)C2—C3—H3119.462
Cl3—Sn1—N1172.30 (8)C4—C3—H3117.886
Cl3—Sn1—N296.15 (9)C4—C5—H5117.907
O1—Sn1—N187.89 (11)C6—C5—H5119.889
O1—Sn1—N2163.86 (10)N1—C7—H7119.449
N1—Sn1—N276.19 (11)C6—C7—H7113.472
Sn1—O1—C1128.15 (19)C8—C9—H9122.470
C21—O2—C22111.3 (3)C10—C9—H9116.978
C21—O3—C23114.7 (3)C9—C10—H10116.927
Sn1—N1—C7123.33 (19)C11—C10—H10122.110
Sn1—N1—C8114.4 (3)C10—C11—H11121.166
C7—N1—C8122.0 (3)C12—C11—H11118.342
Sn1—N2—C15124.7 (2)C12—C13—H13115.150
Sn1—N2—C16114.7 (3)C14—C13—H13124.102
C15—N2—C16120.5 (3)C13—C14—H14121.206
O1—C1—C2116.5 (3)C15—C14—H14119.693
O1—C1—C6124.9 (3)N2—C15—H15118.475
C2—C1—C6118.6 (3)C14—C15—H15119.436
C1—C2—C3119.8 (3)O2—C21—H1110.026
C1—C2—C21117.3 (3)O3—C21—H1104.487
C3—C2—C21122.9 (3)C2—C21—H1108.782
C2—C3—C4122.7 (3)O2—C22—H22A109.469
C3—C4—C5117.4 (4)O2—C22—H22B109.470
C3—C4—C41120.3 (3)O2—C22—H22C109.471
C5—C4—C41122.2 (3)H22A—C22—H22B109.473
C4—C5—C6122.2 (3)H22A—C22—H22C109.468
C1—C6—C5119.4 (3)H22B—C22—H22C109.476
C1—C6—C7125.2 (4)O3—C23—H23A109.471
C5—C6—C7115.5 (3)O3—C23—H23B109.472
N1—C7—C6127.1 (3)O3—C23—H23C109.474
N1—C8—C9125.4 (4)H23A—C23—H23B109.469
N1—C8—C16115.5 (3)H23A—C23—H23C109.474
C9—C8—C16119.1 (3)H23B—C23—H23C109.469
C8—C9—C10120.5 (4)C4—C41—H41A109.468
C9—C10—C11120.9 (3)C4—C41—H41B109.471
C10—C11—C12120.5 (3)C4—C41—H41C109.471
C11—C12—C13124.0 (3)H41A—C41—H41B109.469
C11—C12—C16118.8 (4)H41A—C41—H41C109.478
C13—C12—C16117.2 (3)H41B—C41—H41C109.469
Cl1—Sn1—O1—C1109.7 (2)O1—C1—C2—C213.3 (4)
Cl1—Sn1—N1—C7102.3 (2)O1—C1—C6—C5173.9 (3)
Cl1—Sn1—N1—C884.36 (17)O1—C1—C6—C75.4 (5)
Cl1—Sn1—N2—C1590.7 (3)C2—C1—C6—C52.3 (5)
Cl1—Sn1—N2—C1685.53 (18)C2—C1—C6—C7178.3 (3)
Cl2—Sn1—O1—C166.5 (2)C6—C1—C2—C31.3 (5)
Cl2—Sn1—N1—C779.4 (2)C6—C1—C2—C21179.8 (3)
Cl2—Sn1—N1—C893.95 (17)C1—C2—C3—C40.3 (5)
Cl2—Sn1—N2—C1592.6 (3)C1—C2—C21—O2167.6 (3)
Cl2—Sn1—N2—C1691.18 (19)C1—C2—C21—O367.5 (4)
Cl3—Sn1—O1—C1158.73 (18)C3—C2—C21—O210.9 (5)
Cl3—Sn1—N2—C150.7 (3)C3—C2—C21—O3114.1 (4)
Cl3—Sn1—N2—C16176.89 (18)C21—C2—C3—C4178.1 (3)
O1—Sn1—N1—C712.7 (2)C2—C3—C4—C50.8 (5)
O1—Sn1—N1—C8174.03 (19)C2—C3—C4—C41178.8 (3)
N1—Sn1—O1—C120.9 (2)C3—C4—C5—C60.2 (5)
N1—Sn1—N2—C15179.9 (3)C41—C4—C5—C6179.9 (3)
N1—Sn1—N2—C163.87 (18)C4—C5—C6—C11.8 (5)
N2—Sn1—N1—C7170.0 (3)C4—C5—C6—C7178.8 (3)
N2—Sn1—N1—C83.27 (17)C1—C6—C7—N12.7 (6)
Sn1—O1—C1—C2162.50 (17)C5—C6—C7—N1177.9 (3)
Sn1—O1—C1—C621.2 (5)N1—C8—C9—C10177.8 (3)
C22—O2—C21—O363.5 (4)N1—C8—C16—N21.1 (5)
C22—O2—C21—C2171.0 (3)N1—C8—C16—C12179.0 (3)
C23—O3—C21—O266.9 (3)C9—C8—C16—N2179.9 (3)
C23—O3—C21—C255.7 (4)C9—C8—C16—C120.2 (5)
Sn1—N1—C7—C64.5 (5)C16—C8—C9—C100.8 (5)
Sn1—N1—C8—C9176.4 (3)C8—C9—C10—C110.6 (6)
Sn1—N1—C8—C162.3 (4)C9—C10—C11—C120.7 (6)
C7—N1—C8—C910.2 (5)C10—C11—C12—C13178.8 (3)
C7—N1—C8—C16171.1 (3)C10—C11—C12—C161.7 (6)
C8—N1—C7—C6177.3 (3)C11—C12—C13—C14179.6 (4)
Sn1—N2—C15—C14177.3 (2)C11—C12—C16—N2178.7 (3)
Sn1—N2—C16—C84.0 (4)C11—C12—C16—C81.4 (5)
Sn1—N2—C16—C12176.08 (19)C13—C12—C16—N20.9 (5)
C15—N2—C16—C8179.6 (3)C13—C12—C16—C8179.0 (3)
C15—N2—C16—C120.3 (5)C16—C12—C13—C140.1 (6)
C16—N2—C15—C141.3 (6)C12—C13—C14—C151.6 (6)
O1—C1—C2—C3175.3 (3)C13—C14—C15—N22.2 (6)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x1, y+1, z+2; (iv) x1, y, z+2; (v) x, y, z+2; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z1; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x, y1, z; (xii) x, y+1, z+2; (xiii) x1, y, z; (xiv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(C20H19N2O3)Cl3]
Mr560.43
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)7.213 (5), 11.786 (8), 13.197 (8)
α, β, γ (°)72.300 (13), 79.10 (3), 89.89 (3)
V3)1047.5 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.23 × 0.22 × 0.11
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.779, 0.836
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15965, 5989, 5512
Rint0.020
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.04
No. of reflections5989
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 1.24

Computer programs: CrystalClear (Rigaku, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The authors thank Ms Kanako Ichikawa for the preparation of the title compound and the Japan Private School Promotion Foundation for financial support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakano, K. & Shibahara, T. (2008). Chem. Lett. 37, 70–71.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds