organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-3-(tri­fluoro­meth­yl)aniline

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China
*Correspondence e-mail: jlheyc@163.com

(Received 21 December 2011; accepted 4 January 2012; online 14 January 2012)

In title compound, C8H8F3NO, the meth­oxy group is inclined at 8.7 (4)° to the benzene ring plane. The crystal structure is stabilized by inter­molecular N—H⋯F, N—H⋯N and C—H⋯F hydrogen-bonding inter­actions.

Related literature

The title compound is an inter­mediate in the synthesis of trifluoro­methyl-containing phthalic acid diamides, which are effective pesticides. For the preparation, see: Feng & Li (2010[Feng, M. L. & Li, Y. F. (2010). J. Agric. Food Chem. 58, 10999-11006.]). For the crystal structure of a closely related compound, see: Crampton et al. (2006[Crampton, M. R., Emokpae, T. A., Isanbor, C., Batsanov, A. S., Howard, J. A. K. & Mondal, R. (2006). Eur. J. Org. Chem. pp. 1222-1230.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8F3NO

  • Mr = 191.15

  • Orthorhombic, P b c a

  • a = 5.4140 (11) Å

  • b = 14.880 (3) Å

  • c = 21.304 (4) Å

  • V = 1716.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.986, Tmax = 0.986

  • 1722 measured reflections

  • 1722 independent reflections

  • 1389 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.162

  • S = 1.13

  • 1722 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯F2i 0.96 2.52 3.292 (3) 138
N—H0A⋯F1ii 0.86 2.44 3.242 (2) 155
N—H0B⋯Niii 0.86 2.47 3.245 (3) 150
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound (Fig. 1) is used as an important intermediate in the synthesis of trifluoromethyl-containing phthalic acid compounds which are recognized as effective pesticides (Feng & Li, 2010). In the title molecule, the N, O and C8 atoms bonded to the central benzene ring (C2–C7) lie in its plane with methoxy group (O/C1) oriented at 8.7 (4) ° with respect to the benzene ring plane. There is an intramolecular interaction C6—H6A···F3 which stabilizes the molecular structure of the title compound. The crystal structure is stabilized by N—H0A···F1, N—H0B···N and C1—H1C···F2 intermolecular hydrogen bonding interactions. The bond distances and bond angles in the title compound agree with the corresponding bond distances and bond angles reported in a closely related compound (Crampton et al., 2006).

Related literature top

The title compound is an intermediate in the synthesis of trifluoromethyl-containing phthalic acid diamides, which are recognized as effective pesticides. For the preparation, see: Feng & Li (2010). For the crystal structure of a closely related compound, see: Crampton et al. (2006).

Experimental top

The title compound was prepared by a method reported in the literature (Feng & Li, 2010)). A solution of 4-amino-2-(trifluoromethyl)phenol (2 g, 11.3 mmol) in dichloromethane (20 ml) was added slowly to a solution of sodium hydride (0.33 g, 13.6 nmol) in an ice bath. After stirring for 6 h iodomethane (4.8 g, 33.9 mmol) was added slowly in 1 h. After stirring for 48 h at room tempeature, the solvent was evaporated on a rotary evaporator yielding the title compound. Colorless blocks of the title compound were grown in ethanol (20 ml) by slow evaporation of the solvent at room temperature in about 7 days.

Refinement top

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and alky H-atoms, respectively, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic and amino H, and x = 1.5 for aryl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing hydrogen bonds dashed lines.
4-Methoxy-3-(trifluoromethyl)aniline top
Crystal data top
C8H8F3NOF(000) = 784
Mr = 191.15Dx = 1.480 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 5.4140 (11) Åθ = 3.3–20.0°
b = 14.880 (3) ŵ = 0.14 mm1
c = 21.304 (4) ÅT = 293 K
V = 1716.3 (6) Å3Prism, colorless
Z = 80.10 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1722 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.986, Tmax = 0.986l = 026
1722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.074P)2 + 0.3348P]
where P = (Fo2 + 2Fc2)/3
1722 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H8F3NOV = 1716.3 (6) Å3
Mr = 191.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.4140 (11) ŵ = 0.14 mm1
b = 14.880 (3) ÅT = 293 K
c = 21.304 (4) Å0.10 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1722 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1389 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.986Rint = 0.000
1722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.13Δρmax = 0.20 e Å3
1722 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.0910 (3)0.09833 (11)0.20799 (9)0.0642 (5)
H0A0.18260.05240.20030.077*
H0B0.00200.09980.24140.077*
F30.3126 (4)0.39455 (11)0.21116 (7)0.1021 (6)
F20.3656 (3)0.42452 (10)0.11387 (8)0.0906 (5)
C70.0486 (4)0.32133 (13)0.13969 (9)0.0548 (5)
F10.0537 (3)0.47609 (9)0.16277 (8)0.0924 (6)
O0.0805 (4)0.39518 (12)0.04733 (8)0.0872 (6)
C60.0515 (4)0.24725 (13)0.17919 (10)0.0550 (5)
H6A0.14790.24870.21530.066*
C50.0868 (4)0.17085 (13)0.16592 (9)0.0557 (5)
C80.1937 (4)0.40274 (15)0.15659 (10)0.0643 (6)
C20.0907 (4)0.32022 (15)0.08453 (10)0.0653 (6)
C40.2268 (5)0.17158 (16)0.11146 (11)0.0719 (7)
H4A0.32160.12140.10160.086*
C30.2297 (5)0.24452 (18)0.07140 (11)0.0767 (7)
H3A0.32600.24270.03530.092*
C10.2463 (6)0.4017 (2)0.00398 (11)0.0865 (8)
H1A0.21770.45700.02600.130*
H1B0.22030.35200.03190.130*
H1C0.41310.40050.01130.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0752 (12)0.0474 (10)0.0699 (11)0.0025 (8)0.0031 (9)0.0081 (8)
F30.1383 (15)0.0767 (10)0.0912 (11)0.0339 (10)0.0413 (10)0.0151 (8)
F20.0887 (10)0.0811 (11)0.1018 (11)0.0177 (8)0.0227 (9)0.0065 (8)
C70.0605 (11)0.0477 (11)0.0562 (11)0.0037 (9)0.0035 (10)0.0018 (8)
F10.1106 (12)0.0541 (8)0.1124 (12)0.0104 (8)0.0073 (9)0.0123 (7)
O0.1094 (14)0.0758 (11)0.0763 (11)0.0142 (10)0.0150 (10)0.0304 (9)
C60.0620 (12)0.0492 (11)0.0539 (11)0.0033 (9)0.0009 (10)0.0014 (8)
C50.0625 (12)0.0482 (11)0.0563 (11)0.0046 (9)0.0058 (10)0.0021 (8)
C80.0757 (15)0.0539 (12)0.0632 (12)0.0042 (10)0.0003 (11)0.0069 (10)
C20.0782 (14)0.0604 (13)0.0572 (12)0.0005 (11)0.0006 (11)0.0119 (10)
C40.0852 (16)0.0629 (14)0.0674 (13)0.0141 (12)0.0126 (13)0.0032 (10)
C30.0922 (17)0.0765 (16)0.0614 (13)0.0136 (13)0.0179 (13)0.0116 (11)
C10.0955 (18)0.0942 (19)0.0697 (15)0.0139 (15)0.0077 (15)0.0258 (14)
Geometric parameters (Å, º) top
N—C51.403 (3)C6—C51.390 (3)
N—H0A0.8600C6—H6A0.9300
N—H0B0.8600C5—C41.386 (3)
F3—C81.335 (3)C2—C31.383 (3)
F2—C81.342 (3)C4—C31.381 (3)
C7—C61.387 (3)C4—H4A0.9300
C7—C21.396 (3)C3—H3A0.9300
C7—C81.488 (3)C1—H1A0.9600
F1—C81.335 (3)C1—H1B0.9600
O—C21.369 (3)C1—H1C0.9600
O—C11.418 (3)
C5—N—H0A120.0F1—C8—C7112.9 (2)
C5—N—H0B120.0F2—C8—C7113.50 (19)
H0A—N—H0B120.0O—C2—C3124.6 (2)
C6—C7—C2120.48 (19)O—C2—C7117.1 (2)
C6—C7—C8119.62 (19)C3—C2—C7118.27 (19)
C2—C7—C8119.89 (18)C3—C4—C5122.0 (2)
C2—O—C1118.4 (2)C3—C4—H4A119.0
C7—C6—C5121.37 (19)C5—C4—H4A119.0
C7—C6—H6A119.3C4—C3—C2120.6 (2)
C5—C6—H6A119.3C4—C3—H3A119.7
C4—C5—C6117.27 (18)C2—C3—H3A119.7
C4—C5—N122.13 (19)O—C1—H1A109.5
C6—C5—N120.53 (19)O—C1—H1B109.5
F3—C8—F1105.23 (19)H1A—C1—H1B109.5
F3—C8—F2106.14 (19)O—C1—H1C109.5
F1—C8—F2105.25 (18)H1A—C1—H1C109.5
F3—C8—C7113.03 (18)H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F2i0.962.523.292 (3)138
C6—H6A···F30.932.352.696 (3)102
N—H0A···F1ii0.862.443.242 (2)155
N—H0B···Niii0.862.473.245 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8F3NO
Mr191.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)5.4140 (11), 14.880 (3), 21.304 (4)
V3)1716.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.986, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
1722, 1722, 1389
Rint0.000
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.162, 1.13
No. of reflections1722
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F2i0.962.523.292 (3)138
N—H0A···F1ii0.862.443.242 (2)155
N—H0B···Niii0.862.473.245 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y, z+1/2.
 

Acknowledgements

The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationCrampton, M. R., Emokpae, T. A., Isanbor, C., Batsanov, A. S., Howard, J. A. K. & Mondal, R. (2006). Eur. J. Org. Chem. pp. 1222–1230.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFeng, M. L. & Li, Y. F. (2010). J. Agric. Food Chem. 58, 10999–11006.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds