organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-nitro­benzoic acid

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 January 2012; accepted 17 January 2012; online 21 January 2012)

The title compound, C7H6N2O4, is approximately planar (r.m.s. deviation = 0.026 Å for the 13 non-H atoms). The mol­ecular structure is stabilized by intra­molecular N—H⋯O hydrogen bonds, which generate S(6) ring motifs. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For general background to the title compound and related structures, see: Win et al. (2010[Win, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406-m1407.], 2011a[Win, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m561-m562.],b[Win, Y.-F., Choong, C.-S., Teoh, S.-G., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m1276-m1277.],c[Win, Y.-F., Choong, C.-S., Teoh, S.-G., Yeap, C. S. & Fun, H.-K. (2011c). Acta Cryst. E67, m1114-m1115.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2O4

  • Mr = 182.14

  • Monoclinic, P 21 /c

  • a = 9.0231 (3) Å

  • b = 7.4338 (2) Å

  • c = 11.0392 (4) Å

  • β = 92.114 (1)°

  • V = 739.96 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.34 × 0.26 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.979

  • 22297 measured reflections

  • 3247 independent reflections

  • 2707 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.04

  • 3247 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2 0.892 (17) 1.958 (16) 2.6082 (11) 128.5 (13)
N2—H1N2⋯O1i 0.892 (17) 2.499 (17) 3.2885 (12) 147.8 (14)
N2—H2N2⋯O3 0.872 (15) 1.982 (16) 2.6582 (10) 133.4 (14)
O4—H1O4⋯O3ii 0.83 (2) 1.81 (2) 2.6397 (10) 176.2 (17)
C3—H3A⋯O1iii 0.95 2.49 3.4349 (12) 176
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the study of organotin(IV) carboxylate complexes, 2-amino-5-nitrobenzoic, 2-amino-3-nitrobenzoic, 4-amino-3-nitrobenzoic and 5-amino-2-nitrobenzoic acids have been utilized in the synthesis work (Win et al., 2010, 2011a, 2011b, 2011c). The carboxylate anions of the acids are found to be bonded to tin(IV) atom moieties in both a monodentate and a bidentate manner resulting in structural diversity for organotin(IV) carboxylate complexes (Win et al., 2010, 2011a, 2011b, 2011c).

The title compound, Fig.1, is approximately planar (r.m.s. deviation = 0.026 Å for the 13 non-H atoms). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Win et al., 2010, 2011a, 2011b, 2011c). The molecular structure is stabilized by intramolecular N2–H1N2···O2 and N2–H2N2···O3 hydrogen bonds (Table 1), which generate S(6) ring motifs (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular N2–H1N2···O1, O4–H1O4···O3 and C3–H3A···O1 hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For general background to the title compound and related structures, see: Win et al. (2010, 2011a,b,c). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986).

Experimental top

The attempt to prepare organotin(IV) carboxylate complexes by heating under reflux the mixture of 2-amino-3-nitrobenzoic acid (2 mmol) and dimethyltin(IV) oxide (4 mmol) for 4 h in 50 ml of methanol was unsuccessful. The resulting orange solution was filtered and orange crystals were obtained after 2 weeks. Unfortunately, the crystals obtained were found to be the starting material (2-amino-3-nitrobenzoic acid) with the melting point of 482 K.

Refinement top

Atoms H1O4, H1N2 and H2N2 were located in a difference Fourier map and refined freely with O-H = 0.83 (2) Å and N-H = 0.875 (18) and 0.893 (17) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-Amino-3-nitrobenzoic acid top
Crystal data top
C7H6N2O4F(000) = 376
Mr = 182.14Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9956 reflections
a = 9.0231 (3) Åθ = 2.9–34.8°
b = 7.4338 (2) ŵ = 0.14 mm1
c = 11.0392 (4) ÅT = 100 K
β = 92.114 (1)°Block, orange
V = 739.96 (4) Å30.34 × 0.26 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 35.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1412
Tmin = 0.956, Tmax = 0.979k = 1111
22297 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1903P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C7H6N2O4V = 739.96 (4) Å3
Mr = 182.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0231 (3) ŵ = 0.14 mm1
b = 7.4338 (2) ÅT = 100 K
c = 11.0392 (4) Å0.34 × 0.26 × 0.16 mm
β = 92.114 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2707 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.979Rint = 0.030
22297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
3247 reflectionsΔρmin = 0.33 e Å3
130 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00882 (10)0.85440 (11)0.40698 (8)0.03096 (19)
O20.99701 (8)0.61460 (10)0.29827 (6)0.02030 (14)
O30.62645 (7)0.11784 (9)0.43650 (6)0.01909 (14)
O40.51199 (8)0.18983 (10)0.60595 (6)0.01981 (14)
N10.95660 (8)0.70510 (10)0.38522 (6)0.01587 (14)
N20.81247 (9)0.35687 (11)0.34730 (7)0.01954 (16)
C10.64687 (9)0.51128 (12)0.62950 (7)0.01552 (15)
H1A0.57840.46970.68650.019*
C20.71159 (10)0.67982 (12)0.64617 (8)0.01749 (16)
H2A0.68700.75280.71310.021*
C30.81229 (9)0.73922 (12)0.56356 (7)0.01620 (15)
H3A0.85790.85360.57420.019*
C40.84738 (9)0.63239 (11)0.46482 (7)0.01390 (14)
C50.78217 (8)0.45981 (11)0.44292 (7)0.01334 (14)
C60.67970 (9)0.40152 (11)0.53140 (7)0.01354 (14)
C70.60572 (9)0.22530 (11)0.51976 (7)0.01458 (15)
H1N20.8797 (19)0.393 (2)0.2953 (15)0.034 (4)*
H2N20.7714 (18)0.251 (2)0.3400 (14)0.033 (4)*
H1O40.471 (2)0.092 (3)0.5901 (16)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0415 (4)0.0181 (3)0.0343 (4)0.0153 (3)0.0144 (3)0.0043 (3)
O20.0229 (3)0.0216 (3)0.0168 (3)0.0046 (2)0.0065 (2)0.0007 (2)
O30.0214 (3)0.0154 (3)0.0210 (3)0.0059 (2)0.0076 (2)0.0043 (2)
O40.0231 (3)0.0189 (3)0.0180 (3)0.0087 (2)0.0080 (2)0.0028 (2)
N10.0173 (3)0.0151 (3)0.0153 (3)0.0030 (2)0.0017 (2)0.0023 (2)
N20.0221 (3)0.0175 (3)0.0197 (3)0.0068 (3)0.0094 (3)0.0058 (3)
C10.0162 (3)0.0166 (3)0.0139 (3)0.0015 (3)0.0025 (2)0.0015 (3)
C20.0198 (3)0.0165 (4)0.0163 (3)0.0011 (3)0.0029 (3)0.0036 (3)
C30.0179 (3)0.0138 (3)0.0169 (3)0.0013 (3)0.0008 (3)0.0014 (3)
C40.0143 (3)0.0133 (3)0.0142 (3)0.0016 (2)0.0016 (2)0.0009 (2)
C50.0135 (3)0.0134 (3)0.0132 (3)0.0007 (2)0.0019 (2)0.0003 (2)
C60.0135 (3)0.0128 (3)0.0144 (3)0.0016 (2)0.0021 (2)0.0007 (2)
C70.0143 (3)0.0145 (3)0.0151 (3)0.0025 (3)0.0024 (2)0.0003 (3)
Geometric parameters (Å, º) top
O1—N11.2260 (10)C1—C61.3964 (11)
O2—N11.2380 (10)C1—H1A0.9500
O3—C71.2371 (10)C2—C31.3832 (12)
O4—C71.3227 (10)C2—H2A0.9500
O4—H1O40.83 (2)C3—C41.3945 (11)
N1—C41.4490 (10)C3—H3A0.9500
N2—C51.3401 (11)C4—C51.4283 (11)
N2—H1N20.893 (17)C5—C61.4364 (11)
N2—H2N20.875 (18)C6—C71.4737 (11)
C1—C21.3916 (12)
C7—O4—H1O4108.3 (12)C2—C3—H3A119.8
O1—N1—O2121.45 (7)C4—C3—H3A119.8
O1—N1—C4118.94 (7)C3—C4—C5122.67 (7)
O2—N1—C4119.59 (7)C3—C4—N1116.15 (7)
C5—N2—H1N2119.8 (11)C5—C4—N1121.17 (7)
C5—N2—H2N2119.3 (10)N2—C5—C4123.47 (7)
H1N2—N2—H2N2120.7 (15)N2—C5—C6121.24 (7)
C2—C1—C6121.91 (7)C4—C5—C6115.30 (7)
C2—C1—H1A119.0C1—C6—C5120.75 (7)
C6—C1—H1A119.0C1—C6—C7118.60 (7)
C3—C2—C1118.87 (8)C5—C6—C7120.64 (7)
C3—C2—H2A120.6O3—C7—O4121.60 (8)
C1—C2—H2A120.6O3—C7—C6123.94 (7)
C2—C3—C4120.47 (8)O4—C7—C6114.46 (7)
C6—C1—C2—C30.58 (13)N1—C4—C5—C6177.80 (7)
C1—C2—C3—C40.47 (13)C2—C1—C6—C50.28 (13)
C2—C3—C4—C50.49 (13)C2—C1—C6—C7179.61 (8)
C2—C3—C4—N1178.63 (8)N2—C5—C6—C1178.81 (8)
O1—N1—C4—C31.42 (12)C4—C5—C6—C11.16 (11)
O2—N1—C4—C3177.38 (7)N2—C5—C6—C70.50 (13)
O1—N1—C4—C5179.46 (8)C4—C5—C6—C7179.53 (7)
O2—N1—C4—C51.75 (12)C1—C6—C7—O3179.89 (8)
C3—C4—C5—N2178.69 (8)C5—C6—C7—O30.55 (13)
N1—C4—C5—N22.24 (13)C1—C6—C7—O40.60 (11)
C3—C4—C5—C61.28 (12)C5—C6—C7—O4178.73 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.892 (17)1.958 (16)2.6082 (11)128.5 (13)
N2—H1N2···O1i0.892 (17)2.499 (17)3.2885 (12)147.8 (14)
N2—H2N2···O30.872 (15)1.982 (16)2.6582 (10)133.4 (14)
O4—H1O4···O3ii0.83 (2)1.81 (2)2.6397 (10)176.2 (17)
C3—H3A···O1iii0.952.493.4349 (12)176
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H6N2O4
Mr182.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0231 (3), 7.4338 (2), 11.0392 (4)
β (°) 92.114 (1)
V3)739.96 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.34 × 0.26 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.956, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
22297, 3247, 2707
Rint0.030
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.04
No. of reflections3247
No. of parameters130
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.892 (17)1.958 (16)2.6082 (11)128.5 (13)
N2—H1N2···O1i0.892 (17)2.499 (17)3.2885 (12)147.8 (14)
N2—H2N2···O30.872 (15)1.982 (16)2.6582 (10)133.4 (14)
O4—H1O4···O3ii0.83 (2)1.81 (2)2.6397 (10)176.2 (17)
C3—H3A···O1iii0.95002.49003.4349 (12)176.00
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Visiting Professor: College of Pharmacy, King Saud University Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (project No. IPSR/RMC/UTARRF/C1-11/C07) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m561–m562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406–m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Teoh, S.-G., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m1276–m1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Teoh, S.-G., Yeap, C. S. & Fun, H.-K. (2011c). Acta Cryst. E67, m1114–m1115.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds