metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m185-m186

(Nitrato-κ2O,O′)bis­­(tryptanthrin-κN)silver(I)

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and bSinopharmtcm Shenzhen Ltd, Shenzhen 518029, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 7 October 2011; accepted 15 January 2012; online 21 January 2012)

In the crystal structure of the title compound, [Ag(NO3)(C15H8N2O2)2], tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and silver nitrate form a 2:1 complex. The silver ion is surrounded by two tryptanthrin ligands, each coordinating through the N atoms, with Ag—N bond lengths of 2.247 (3) and 2.264 (3) Å, and an anionic nitrate ligand coordinating through two O atoms, with Ag—O bond lengths of 2.499 (3) and 2.591 (3) Å. The N—Ag—N plane and the O—Ag—O plane are roughly perpendicular, making a dihedral angle of 81.6 (2)°. In the crystal, C—H⋯O inter­actions between aromatic H atoms and keto and nitrate O atoms as well as ππ inter­actions [centroid-centroid distance = 3.706 (4) Å] give rise to a three-dimensional network.

Related literature

For the biological activity of tryptanthrin, see: Yu et al. (2007[Yu, S. T., Chen, T. M., Tseng, S. Y. & Chen, Y. H. (2007). Biochem. Biophys. Res. Commun. 358, 79-84.]); Chan et al. (2009[Chan, H. L., Yip, H. Y., Mak, N. K. & Leung, K. N. (2009). Cell. Mol. Immunol. 6, 335-342.]); Bandekar et al. (2010[Bandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem. 53, 3558-3565.]). For the synthesis and structural modification of tryptanthrin, see: Jao et al. (2008[Jao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275-1279.]); Kumar et al. (2011[Kumar, A., Tripathi, V. D. & Kumar, P. (2011). Green Chem. 13, 51-54.]); Chen et al. (2011[Chen, H. J., Tsao, H. H., Lo, J. G., Chiu, K. H. & Jen, J. F. (2011). Separ. Sci. Technol. 46, 972-977.]). For related ππ inter­actions in natural flavonoids, see: Jiang et al. (2002[Jiang, R. W., Ye, W. C., Woo, K. Y., Du, J., Che, C. T., But, P. P. H. & Mak, T. C. W. (2002). J. Mol. Struct. 642, 77-84.], 2009[Jiang, R. W., Wang, Y., Gao, H., Zhang, D. M. & Ye, W. C. (2009). J. Mol. Struct. 920, 383-386.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For bond lengths and angles in a silver nitrate complex with 4,4′-trimethyl­enedipiperidine, see: Kokunov et al. (2011[Kokunov, Y. V., Gorbunova, Y. E. & Kovalev, V. V. (2011). Russ. J. Inorg. Chem. 56, 39-43.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C15H8N2O2)2]

  • Mr = 666.35

  • Triclinic, [P \overline 1]

  • a = 8.0598 (19) Å

  • b = 10.873 (3) Å

  • c = 14.541 (3) Å

  • α = 76.010 (4)°

  • β = 81.019 (4)°

  • γ = 84.447 (4)°

  • V = 1219.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 150 K

  • 0.34 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 1.000

  • 9843 measured reflections

  • 5150 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.06

  • 5150 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3′—H3′A⋯O1i 0.95 2.52 3.348 (4) 145
C4′—H4′A⋯O4ii 0.95 2.42 3.300 (3) 153
C3—H3A⋯O1′iii 0.95 2.45 3.139 (4) 130
C6′—H6′A⋯O2 0.95 2.40 3.313 (4) 161
C4—H4A⋯O3iv 0.95 2.53 3.190 (2) 127
C6—H6A⋯O2′ 0.95 2.53 3.454 (3) 164
C13′—H13B⋯O4v 0.95 2.53 3.453 (2) 163
C14—H14A⋯O1 0.95 2.47 2.996 (5) 115
C14′—H14B⋯O1′ 0.95 2.43 2.970 (3) 116
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y, -z+2; (v) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XPREP (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tryptanthrin is an indole quinazoline alkaloid isolated from Folium Isatidis (Chen et al., 2011). It was found to inhibit the murine myelomonocytic leukemia cells by causing cell cycle arrest and triggering cell differentiation (Chan et al., 2009), and reverse the doxorubicin resistance in breast cancer cells by inhibition of MDR1 (Yu et al., 2007). It was also found to inhibit the growth of Escherichia coli through intercalation into DNA (Bandekar et al., 2010). In addition, synthesis of tryptanthrin (Kumar et al., 2011) and its derivatives (Chen et al., 2011) were reported.

Tryptanthrin and silver nitrate form a 2:1 complex. The same proportions were used in the synthesis. Both the two tryptanthrin molecules are essentially planar with mean deviations of 0.0066 (4) Å and 0.0054 (3) Å, respectively, and make a dihedral angle of 2.9 (2)°. The nitrate group makes dihedral angles of 89.5 (3)° and 105.1 (4)° with the two tryptanthrin molecules. The silver ion is coordinated with two oxygen atoms from the anionic nitrate ligand with bond distances of 2.499 (3) Å and 2.591 (3) Å, and two nitrogen atoms from the tryptanthrin ligands with bond distances of 2.266 (3) Å and 2.249 (3) Å, which are slightly longer than those reported in silver nitrate complex with 4,4'-trimethylenedipiperidine [2.192 (5) Å and 2.212 (5) Å] (Kokunov et al., 2011). The N—Ag—N plane and the O—Ag—O plane are roughly perpendicular with a dihedral angle of 81.6 (2)°. The bond distances and bond angles in both tryptanthrin molecules are all normal (Allen et al., 1987).

Short intermolecular C—H···O interactions (Table 1) between the tryptanthrin methane H atoms and the nitrate ligand [C4'—H···O4, 3.300 (3) Å, C13'—H···O4, 3.453 (2) Å] linked adjacent molecules into layers. Adjacent layers were linked by π-π interactions between the benzene rings [centroid-centroid distance 3.706 (4) Å and displacement angle 4.5 (2)°]. The centroid-centroid distance observed in title compound is similar to those in natural flavonoids (Jiang, et al., 2002 and 2009).

Related literature top

For the biological activity of tryptanthrin, see: Yu et al. (2007); Chan et al. (2009); Bandekar et al. (2010). For the synthesis and structural modification of tryptanthrin, see: Jao et al. (2008); Kumar et al. (2011); Chen et al. (2011). For related ππ interactions in natural flavonoids, see: Jiang et al. (2002, 2009). For standard bond lengths, see Allen et al. (1987). For bond lengths and angles in a silver nitrate complex with 4,4'-trimethylenedipiperidine, see: Kokunov et al. (2011).

Experimental top

Tryptanthrin (12.4 mg, 0.05 mmol) was dissolved in a solution including methanol (1 ml) and chloroform (3 ml). silver nitrate (17.0 mg, 0.1 mmol) was dissolved in methanol (1 ml) and was added into the tryptanthrin solution. Three days later, the crystals were obtained via slow evaporation at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). There was a residue peak with height of 1.08 and distance of 0.93 Å from Ag after the final refinement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: XPREP (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram viewed down the c axis. The dashed lines represent intermolecular C—H···O interactions.
Bis(indolo[2,1-b]quinazoline-6,12-dione-κN)(nitrato- κ2O,O')silver(I) top
Crystal data top
[Ag(NO3)(C15H8N2O2)2]Z = 2
Mr = 666.35F(000) = 668
Triclinic, P1Dx = 1.815 Mg m3
a = 8.0598 (19) ÅMo Kα radiation, λ = 0.71074 Å
b = 10.873 (3) ÅCell parameters from 9843 reflections
c = 14.541 (3) Åθ = 3.2–80.9°
α = 76.010 (4)°µ = 0.89 mm1
β = 81.019 (4)°T = 150 K
γ = 84.447 (4)°Block, yellow
V = 1219.0 (5) Å30.34 × 0.26 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
5150 independent reflections
Radiation source: fine-focus sealed tube3893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.626, Tmax = 1.000k = 1313
9843 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
5150 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ag(NO3)(C15H8N2O2)2]γ = 84.447 (4)°
Mr = 666.35V = 1219.0 (5) Å3
Triclinic, P1Z = 2
a = 8.0598 (19) ÅMo Kα radiation
b = 10.873 (3) ŵ = 0.89 mm1
c = 14.541 (3) ÅT = 150 K
α = 76.010 (4)°0.34 × 0.26 × 0.22 mm
β = 81.019 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5150 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3893 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 1.000Rint = 0.034
9843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 1.08 e Å3
5150 reflectionsΔρmin = 0.63 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.16812 (4)0.20968 (3)0.75957 (2)0.01945 (11)
O10.1263 (4)0.2779 (3)1.17705 (19)0.0228 (7)
O20.0402 (3)0.4293 (3)0.76517 (19)0.0203 (6)
N10.0735 (4)0.2171 (3)0.9133 (2)0.0153 (7)
N20.1018 (4)0.3331 (3)1.0138 (2)0.0152 (7)
C10.0672 (5)0.2537 (4)1.1009 (3)0.0181 (9)
C20.0488 (5)0.1456 (4)1.0870 (3)0.0159 (8)
C30.0992 (5)0.0596 (4)1.1675 (3)0.0206 (9)
H3A0.05320.06911.22980.025*
C40.2162 (5)0.0393 (4)1.1561 (3)0.0239 (10)
H4A0.24930.09861.21080.029*
C50.2856 (5)0.0522 (4)1.0649 (3)0.0229 (9)
H5A0.36800.11911.05790.028*
C60.2361 (5)0.0311 (4)0.9844 (3)0.0196 (9)
H6A0.28210.02060.92230.024*
C70.1178 (5)0.1310 (4)0.9955 (3)0.0155 (8)
C80.0295 (5)0.3110 (4)0.9265 (3)0.0152 (8)
C90.0852 (5)0.4188 (4)0.8498 (3)0.0181 (9)
C100.1937 (5)0.5033 (4)0.9006 (3)0.0155 (8)
C110.2774 (5)0.6174 (4)0.8666 (3)0.0206 (9)
H11A0.26920.65370.79980.025*
C120.3733 (5)0.6781 (4)0.9311 (3)0.0236 (9)
H12A0.43340.75660.90890.028*
C130.3827 (5)0.6249 (4)1.0287 (3)0.0215 (9)
H13A0.44950.66851.07210.026*
C140.2977 (5)0.5102 (4)1.0649 (3)0.0198 (9)
H14A0.30520.47461.13170.024*
C150.2014 (5)0.4501 (4)0.9990 (3)0.0171 (8)
O1'0.1922 (4)0.0444 (3)0.37176 (19)0.0238 (7)
O2'0.3255 (4)0.0370 (3)0.76130 (19)0.0211 (6)
N1'0.1282 (4)0.1466 (3)0.6288 (2)0.0151 (7)
N2'0.2432 (4)0.0131 (3)0.5259 (2)0.0146 (7)
C1'0.1695 (5)0.0793 (4)0.4463 (3)0.0162 (8)
C2'0.0650 (5)0.1903 (4)0.4645 (3)0.0147 (8)
C3'0.0166 (5)0.2676 (4)0.3917 (3)0.0168 (8)
H3'A0.00200.24860.33040.020*
C4'0.1183 (5)0.3713 (4)0.4083 (3)0.0189 (9)
H4'A0.17300.42440.35840.023*
C5'0.1411 (5)0.3985 (4)0.4989 (3)0.0223 (9)
H5'A0.21290.46950.51020.027*
C6'0.0611 (5)0.3240 (4)0.5718 (3)0.0202 (9)
H6'A0.07780.34310.63320.024*
C7'0.0446 (5)0.2203 (4)0.5550 (3)0.0143 (8)
C8'0.2189 (5)0.0498 (4)0.6114 (3)0.0146 (8)
C9'0.3156 (5)0.0455 (4)0.6808 (3)0.0168 (8)
C10'0.3883 (5)0.1396 (4)0.6284 (3)0.0172 (8)
C11'0.4838 (5)0.2517 (4)0.6561 (3)0.0212 (9)
H11B0.50660.28010.72030.025*
C12'0.5456 (5)0.3218 (4)0.5889 (3)0.0234 (9)
H12B0.61090.39910.60700.028*
C13'0.5123 (5)0.2793 (4)0.4945 (3)0.0223 (9)
H13B0.55860.32700.44880.027*
C14'0.4125 (5)0.1686 (4)0.4660 (3)0.0188 (9)
H14B0.38770.14090.40220.023*
C15'0.3514 (5)0.1012 (4)0.5342 (3)0.0152 (8)
N30.4813 (4)0.3383 (3)0.7421 (2)0.0211 (8)
O30.4698 (4)0.2218 (3)0.7760 (3)0.0418 (9)
O40.3608 (4)0.3988 (3)0.7064 (2)0.0355 (8)
O50.6079 (4)0.3907 (3)0.7475 (2)0.0393 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02012 (18)0.02486 (19)0.01477 (17)0.00208 (12)0.00300 (12)0.00824 (13)
O10.0281 (16)0.0265 (16)0.0124 (14)0.0007 (13)0.0007 (12)0.0053 (12)
O20.0196 (15)0.0273 (16)0.0136 (14)0.0003 (13)0.0010 (12)0.0053 (12)
N10.0112 (16)0.0187 (17)0.0167 (17)0.0020 (14)0.0016 (13)0.0051 (14)
N20.0131 (16)0.0203 (17)0.0115 (16)0.0012 (14)0.0017 (13)0.0043 (14)
C10.018 (2)0.022 (2)0.015 (2)0.0074 (17)0.0030 (17)0.0028 (17)
C20.016 (2)0.018 (2)0.0147 (19)0.0034 (16)0.0044 (16)0.0036 (16)
C30.020 (2)0.025 (2)0.016 (2)0.0025 (18)0.0014 (17)0.0045 (18)
C40.022 (2)0.027 (2)0.021 (2)0.0049 (19)0.0064 (18)0.0017 (19)
C50.017 (2)0.022 (2)0.030 (2)0.0029 (18)0.0062 (18)0.0070 (19)
C60.018 (2)0.023 (2)0.019 (2)0.0032 (17)0.0033 (17)0.0063 (18)
C70.0135 (19)0.018 (2)0.0160 (19)0.0045 (16)0.0042 (16)0.0035 (16)
C80.0145 (19)0.020 (2)0.0123 (19)0.0090 (17)0.0009 (15)0.0037 (16)
C90.0124 (19)0.023 (2)0.018 (2)0.0071 (17)0.0027 (16)0.0007 (17)
C100.0113 (19)0.021 (2)0.016 (2)0.0022 (16)0.0004 (16)0.0079 (17)
C110.016 (2)0.027 (2)0.019 (2)0.0009 (18)0.0040 (17)0.0050 (18)
C120.022 (2)0.021 (2)0.031 (2)0.0011 (18)0.0100 (19)0.0066 (19)
C130.014 (2)0.024 (2)0.027 (2)0.0031 (17)0.0012 (17)0.0087 (19)
C140.017 (2)0.022 (2)0.020 (2)0.0067 (17)0.0038 (17)0.0063 (18)
C150.015 (2)0.0149 (19)0.022 (2)0.0061 (16)0.0017 (17)0.0039 (17)
O1'0.0287 (17)0.0304 (17)0.0143 (14)0.0009 (13)0.0066 (13)0.0076 (13)
O2'0.0225 (15)0.0246 (16)0.0161 (15)0.0026 (12)0.0059 (12)0.0041 (12)
N1'0.0143 (16)0.0175 (17)0.0127 (16)0.0034 (14)0.0008 (13)0.0018 (14)
N2'0.0185 (17)0.0136 (16)0.0117 (16)0.0010 (14)0.0022 (14)0.0027 (13)
C1'0.0128 (19)0.020 (2)0.017 (2)0.0006 (16)0.0020 (16)0.0056 (17)
C2'0.0135 (19)0.0169 (19)0.0121 (18)0.0051 (16)0.0008 (15)0.0005 (16)
C3'0.0123 (19)0.023 (2)0.0137 (19)0.0034 (17)0.0002 (16)0.0027 (17)
C4'0.0123 (19)0.021 (2)0.019 (2)0.0041 (17)0.0036 (16)0.0054 (17)
C5'0.016 (2)0.016 (2)0.031 (2)0.0045 (17)0.0034 (18)0.0005 (18)
C6'0.020 (2)0.021 (2)0.021 (2)0.0048 (18)0.0043 (17)0.0047 (18)
C7'0.0108 (18)0.0157 (19)0.0151 (19)0.0038 (16)0.0007 (15)0.0010 (16)
C8'0.0119 (19)0.017 (2)0.0139 (19)0.0077 (16)0.0006 (15)0.0003 (16)
C9'0.0132 (19)0.018 (2)0.017 (2)0.0021 (16)0.0000 (16)0.0006 (17)
C10'0.0132 (19)0.022 (2)0.0155 (19)0.0035 (17)0.0005 (16)0.0037 (17)
C11'0.016 (2)0.021 (2)0.025 (2)0.0013 (17)0.0059 (18)0.0017 (18)
C12'0.019 (2)0.019 (2)0.031 (2)0.0002 (18)0.0050 (19)0.0039 (19)
C13'0.019 (2)0.021 (2)0.028 (2)0.0047 (18)0.0025 (18)0.0094 (19)
C14'0.016 (2)0.019 (2)0.021 (2)0.0078 (17)0.0020 (17)0.0041 (17)
C15'0.0147 (19)0.0148 (19)0.0155 (19)0.0029 (16)0.0036 (16)0.0007 (16)
N30.0160 (18)0.026 (2)0.0206 (19)0.0022 (16)0.0019 (15)0.0065 (16)
O30.0239 (18)0.0247 (18)0.071 (3)0.0026 (14)0.0111 (17)0.0015 (17)
O40.0246 (18)0.0298 (18)0.047 (2)0.0059 (14)0.0132 (16)0.0029 (16)
O50.0257 (18)0.048 (2)0.045 (2)0.0132 (16)0.0080 (16)0.0051 (17)
Geometric parameters (Å, º) top
Ag1—N1'2.247 (3)O1'—C1'1.215 (5)
Ag1—N12.264 (3)O2'—C9'1.212 (5)
Ag1—O32.499 (3)N1'—C8'1.277 (5)
Ag1—O42.591 (3)N1'—C7'1.398 (5)
O1—C11.214 (5)N2'—C8'1.374 (5)
O2—C91.209 (5)N2'—C1'1.393 (5)
N1—C81.284 (5)N2'—C15'1.439 (5)
N1—C71.400 (5)C1'—C2'1.457 (5)
N2—C81.377 (5)C2'—C3'1.392 (5)
N2—C11.401 (5)C2'—C7'1.413 (5)
N2—C151.426 (5)C3'—C4'1.376 (6)
C1—C21.463 (6)C3'—H3'A0.9500
C2—C31.398 (5)C4'—C5'1.400 (6)
C2—C71.399 (5)C4'—H4'A0.9500
C3—C41.384 (6)C5'—C6'1.377 (6)
C3—H3A0.9500C5'—H5'A0.9500
C4—C51.390 (6)C6'—C7'1.393 (5)
C4—H4A0.9500C6'—H6'A0.9500
C5—C61.383 (6)C8'—C9'1.511 (5)
C5—H5A0.9500C9'—C10'1.447 (5)
C6—C71.397 (6)C10'—C11'1.386 (6)
C6—H6A0.9500C10'—C15'1.402 (5)
C8—C91.497 (5)C11'—C12'1.386 (6)
C9—C101.458 (5)C11'—H11B0.9500
C10—C111.373 (6)C12'—C13'1.397 (6)
C10—C151.401 (5)C12'—H12B0.9500
C11—C121.373 (6)C13'—C14'1.394 (6)
C11—H11A0.9500C13'—H13B0.9500
C12—C131.390 (6)C14'—C15'1.375 (5)
C12—H12A0.9500C14'—H14B0.9500
C13—C141.390 (6)N3—O41.231 (4)
C13—H13A0.9500N3—O51.237 (4)
C14—C151.385 (6)N3—O31.250 (4)
C14—H14A0.9500
N1'—Ag1—N1147.76 (11)C8'—N1'—C7'116.9 (3)
N1'—Ag1—O3114.47 (12)C8'—N1'—Ag1116.4 (3)
N1—Ag1—O394.10 (12)C7'—N1'—Ag1124.8 (2)
N1'—Ag1—O4108.49 (11)C8'—N2'—C1'123.1 (3)
N1—Ag1—O4101.36 (11)C8'—N2'—C15'109.4 (3)
O3—Ag1—O449.28 (10)C1'—N2'—C15'127.5 (3)
C8—N1—C7116.5 (3)O1'—C1'—N2'121.8 (4)
C8—N1—Ag1116.7 (3)O1'—C1'—C2'125.8 (4)
C7—N1—Ag1126.7 (2)N2'—C1'—C2'112.4 (3)
C8—N2—C1122.7 (3)C3'—C2'—C7'119.5 (4)
C8—N2—C15109.3 (3)C3'—C2'—C1'119.6 (3)
C1—N2—C15127.9 (3)C7'—C2'—C1'120.9 (3)
O1—C1—N2121.7 (4)C4'—C3'—C2'120.2 (4)
O1—C1—C2126.3 (4)C4'—C3'—H3'A119.9
N2—C1—C2112.0 (3)C2'—C3'—H3'A119.9
C3—C2—C7119.6 (4)C3'—C4'—C5'119.9 (4)
C3—C2—C1118.7 (3)C3'—C4'—H4'A120.1
C7—C2—C1121.6 (3)C5'—C4'—H4'A120.1
C4—C3—C2119.8 (4)C6'—C5'—C4'121.0 (4)
C4—C3—H3A120.1C6'—C5'—H5'A119.5
C2—C3—H3A120.1C4'—C5'—H5'A119.5
C3—C4—C5120.2 (4)C5'—C6'—C7'119.4 (4)
C3—C4—H4A119.9C5'—C6'—H6'A120.3
C5—C4—H4A119.9C7'—C6'—H6'A120.3
C6—C5—C4120.9 (4)C6'—C7'—N1'119.0 (3)
C6—C5—H5A119.6C6'—C7'—C2'120.0 (4)
C4—C5—H5A119.6N1'—C7'—C2'121.0 (3)
C5—C6—C7119.2 (4)N1'—C8'—N2'125.6 (4)
C5—C6—H6A120.4N1'—C8'—C9'126.3 (3)
C7—C6—H6A120.4N2'—C8'—C9'108.1 (3)
C6—C7—C2120.3 (4)O2'—C9'—C10'131.1 (4)
C6—C7—N1118.4 (3)O2'—C9'—C8'124.3 (4)
C2—C7—N1121.2 (3)C10'—C9'—C8'104.6 (3)
N1—C8—N2126.0 (4)C11'—C10'—C15'119.7 (4)
N1—C8—C9125.9 (3)C11'—C10'—C9'131.0 (4)
N2—C8—C9108.1 (3)C15'—C10'—C9'109.2 (3)
O2—C9—C10130.4 (4)C10'—C11'—C12'119.0 (4)
O2—C9—C8124.4 (4)C10'—C11'—H11B120.5
C10—C9—C8105.1 (3)C12'—C11'—H11B120.5
C11—C10—C15121.3 (4)C11'—C12'—C13'120.3 (4)
C11—C10—C9130.6 (4)C11'—C12'—H12B119.9
C15—C10—C9108.1 (3)C13'—C12'—H12B119.9
C12—C11—C10118.6 (4)C14'—C13'—C12'121.5 (4)
C12—C11—H11A120.7C14'—C13'—H13B119.2
C10—C11—H11A120.7C12'—C13'—H13B119.2
C11—C12—C13120.2 (4)C15'—C14'—C13'117.2 (4)
C11—C12—H12A119.9C15'—C14'—H14B121.4
C13—C12—H12A119.9C13'—C14'—H14B121.4
C12—C13—C14122.2 (4)C14'—C15'—C10'122.3 (4)
C12—C13—H13A118.9C14'—C15'—N2'129.2 (4)
C14—C13—H13A118.9C10'—C15'—N2'108.5 (3)
C15—C14—C13116.9 (4)O4—N3—O5121.6 (4)
C15—C14—H14A121.5O4—N3—O3117.8 (3)
C13—C14—H14A121.5O5—N3—O3120.6 (4)
C14—C15—C10120.7 (4)N3—O3—Ag198.2 (2)
C14—C15—N2129.9 (4)N3—O4—Ag194.3 (2)
C10—C15—N2109.4 (3)
N1'—Ag1—N1—C887.6 (3)O4—Ag1—N1'—C7'64.6 (3)
O3—Ag1—N1—C8119.3 (3)C8'—N2'—C1'—O1'179.5 (4)
O4—Ag1—N1—C870.0 (3)C15'—N2'—C1'—O1'0.3 (6)
N1'—Ag1—N1—C793.5 (3)C8'—N2'—C1'—C2'0.1 (5)
O3—Ag1—N1—C759.6 (3)C15'—N2'—C1'—C2'179.1 (3)
O4—Ag1—N1—C7108.8 (3)O1'—C1'—C2'—C3'1.2 (6)
C8—N2—C1—O1176.6 (4)N2'—C1'—C2'—C3'179.4 (3)
C15—N2—C1—O11.8 (6)O1'—C1'—C2'—C7'178.6 (4)
C8—N2—C1—C21.6 (5)N2'—C1'—C2'—C7'0.8 (5)
C15—N2—C1—C2176.4 (3)C7'—C2'—C3'—C4'1.0 (6)
O1—C1—C2—C30.0 (6)C1'—C2'—C3'—C4'178.8 (3)
N2—C1—C2—C3178.2 (3)C2'—C3'—C4'—C5'0.6 (6)
O1—C1—C2—C7175.9 (4)C3'—C4'—C5'—C6'1.0 (6)
N2—C1—C2—C72.3 (5)C4'—C5'—C6'—C7'0.3 (6)
C7—C2—C3—C40.3 (6)C5'—C6'—C7'—N1'178.7 (3)
C1—C2—C3—C4176.3 (4)C5'—C6'—C7'—C2'1.9 (6)
C2—C3—C4—C51.0 (6)C8'—N1'—C7'—C6'177.5 (3)
C3—C4—C5—C61.6 (6)Ag1—N1'—C7'—C6'18.6 (5)
C4—C5—C6—C71.5 (6)C8'—N1'—C7'—C2'2.0 (5)
C5—C6—C7—C20.8 (6)Ag1—N1'—C7'—C2'162.0 (3)
C5—C6—C7—N1177.8 (3)C3'—C2'—C7'—C6'2.3 (5)
C3—C2—C7—C60.2 (6)C1'—C2'—C7'—C6'177.5 (3)
C1—C2—C7—C6176.0 (4)C3'—C2'—C7'—N1'178.3 (3)
C3—C2—C7—N1178.4 (3)C1'—C2'—C7'—N1'1.9 (5)
C1—C2—C7—N12.5 (6)C7'—N1'—C8'—N2'1.0 (5)
C8—N1—C7—C6176.8 (3)Ag1—N1'—C8'—N2'164.3 (3)
Ag1—N1—C7—C62.1 (5)C7'—N1'—C8'—C9'177.9 (3)
C8—N1—C7—C21.8 (5)Ag1—N1'—C8'—C9'16.8 (5)
Ag1—N1—C7—C2179.3 (3)C1'—N2'—C8'—N1'0.0 (6)
C7—N1—C8—N21.2 (5)C15'—N2'—C8'—N1'179.3 (3)
Ag1—N1—C8—N2179.9 (3)C1'—N2'—C8'—C9'179.1 (3)
C7—N1—C8—C9175.6 (3)C15'—N2'—C8'—C9'0.2 (4)
Ag1—N1—C8—C93.3 (5)N1'—C8'—C9'—O2'4.1 (6)
C1—N2—C8—N11.2 (6)N2'—C8'—C9'—O2'176.8 (4)
C15—N2—C8—N1176.9 (4)N1'—C8'—C9'—C10'176.7 (4)
C1—N2—C8—C9176.0 (3)N2'—C8'—C9'—C10'2.4 (4)
C15—N2—C8—C90.4 (4)O2'—C9'—C10'—C11'3.8 (7)
N1—C8—C9—O20.9 (6)C8'—C9'—C10'—C11'177.0 (4)
N2—C8—C9—O2178.2 (4)O2'—C9'—C10'—C15'174.9 (4)
N1—C8—C9—C10177.1 (4)C8'—C9'—C10'—C15'4.2 (4)
N2—C8—C9—C100.2 (4)C15'—C10'—C11'—C12'2.0 (6)
O2—C9—C10—C111.2 (7)C9'—C10'—C11'—C12'176.6 (4)
C8—C9—C10—C11178.9 (4)C10'—C11'—C12'—C13'0.3 (6)
O2—C9—C10—C15177.7 (4)C11'—C12'—C13'—C14'2.1 (6)
C8—C9—C10—C150.0 (4)C12'—C13'—C14'—C15'1.5 (6)
C15—C10—C11—C121.5 (6)C13'—C14'—C15'—C10'0.8 (6)
C9—C10—C11—C12179.7 (4)C13'—C14'—C15'—N2'178.2 (4)
C10—C11—C12—C130.8 (6)C11'—C10'—C15'—C14'2.6 (6)
C11—C12—C13—C140.2 (6)C9'—C10'—C15'—C14'176.3 (3)
C12—C13—C14—C150.2 (6)C11'—C10'—C15'—N2'176.6 (3)
C13—C14—C15—C100.8 (6)C9'—C10'—C15'—N2'4.5 (4)
C13—C14—C15—N2179.8 (4)C8'—N2'—C15'—C14'177.9 (4)
C11—C10—C15—C141.5 (6)C1'—N2'—C15'—C14'2.8 (6)
C9—C10—C15—C14179.4 (3)C8'—N2'—C15'—C10'2.9 (4)
C11—C10—C15—N2179.3 (3)C1'—N2'—C15'—C10'176.3 (3)
C9—C10—C15—N20.3 (4)O4—N3—O3—Ag17.0 (4)
C8—N2—C15—C14179.5 (4)O5—N3—O3—Ag1170.6 (3)
C1—N2—C15—C145.2 (6)N1'—Ag1—O3—N397.8 (3)
C8—N2—C15—C100.4 (4)N1—Ag1—O3—N397.6 (3)
C1—N2—C15—C10175.8 (4)O4—Ag1—O3—N33.9 (2)
N1—Ag1—N1'—C8'103.8 (3)O5—N3—O4—Ag1170.9 (3)
O3—Ag1—N1'—C8'46.6 (3)O3—N3—O4—Ag16.7 (4)
O4—Ag1—N1'—C8'99.4 (3)N1'—Ag1—O4—N3110.7 (2)
N1—Ag1—N1'—C7'92.3 (3)N1—Ag1—O4—N381.7 (3)
O3—Ag1—N1'—C7'117.4 (3)O3—Ag1—O4—N33.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.523.348 (4)145
C4—H4A···O4ii0.952.423.300 (3)153
C3—H3A···O1iii0.952.453.139 (4)130
C6—H6A···O20.952.403.313 (4)161
C4—H4A···O3iv0.952.533.190 (2)127
C6—H6A···O20.952.533.454 (3)164
C13—H13B···O4v0.952.533.453 (2)163
C14—H14A···O10.952.472.996 (5)115
C14—H14B···O10.952.432.970 (3)116
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C15H8N2O2)2]
Mr666.35
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.0598 (19), 10.873 (3), 14.541 (3)
α, β, γ (°)76.010 (4), 81.019 (4), 84.447 (4)
V3)1219.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.34 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.626, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9843, 5150, 3893
Rint0.034
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.06
No. of reflections5150
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.63

Computer programs: SMART (Bruker, 1998), SMART and SAINT (Bruker, 1998), XPREP (Bruker, 1998), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3'—H3'A···O1i0.952.523.348 (4)145
C4'—H4'A···O4ii0.952.423.300 (3)153
C3—H3A···O1'iii0.952.453.139 (4)130
C6'—H6'A···O20.952.403.313 (4)161
C4—H4A···O3iv0.952.533.190 (2)127
C6—H6A···O2'0.952.533.454 (3)164
C13'—H13B···O4v0.952.533.453 (2)163
C14—H14A···O10.952.472.996 (5)115
C14'—H14B···O1'0.952.432.970 (3)116
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+2; (v) x+1, y, z+1.
 

Acknowledgements

This work was supported by grants from the New Century Excellent Talents Scheme of the Ministry of Education (NCET-08–0612), the National Science Foundation of China (30801433) and the Fundamental Research Funds for the Central Universities (21609202).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem. 53, 3558–3565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, H. L., Yip, H. Y., Mak, N. K. & Leung, K. N. (2009). Cell. Mol. Immunol. 6, 335–342.  CrossRef PubMed CAS Google Scholar
First citationChen, H. J., Tsao, H. H., Lo, J. G., Chiu, K. H. & Jen, J. F. (2011). Separ. Sci. Technol. 46, 972–977.  Web of Science CrossRef CAS Google Scholar
First citationJao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275–1279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, R. W., Wang, Y., Gao, H., Zhang, D. M. & Ye, W. C. (2009). J. Mol. Struct. 920, 383–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, R. W., Ye, W. C., Woo, K. Y., Du, J., Che, C. T., But, P. P. H. & Mak, T. C. W. (2002). J. Mol. Struct. 642, 77–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationKokunov, Y. V., Gorbunova, Y. E. & Kovalev, V. V. (2011). Russ. J. Inorg. Chem. 56, 39–43.  Web of Science CrossRef CAS Google Scholar
First citationKumar, A., Tripathi, V. D. & Kumar, P. (2011). Green Chem. 13, 51–54.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S. T., Chen, T. M., Tseng, S. Y. & Chen, Y. H. (2007). Biochem. Biophys. Res. Commun. 358, 79–84.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m185-m186
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds