metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m103-m104

Poly[[aqua-μ6-benzene-1,2,3-tri­carboxyl­ato-μ3-hydroxido-dizinc] hemihydrate]

aJilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China
*Correspondence e-mail: jilindxw@yahoo.com.cn

(Received 7 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title compound, {[Zn2(C9H3O6)(OH)(H2O)]·0.5H2O}n, there are three independent ZnII atoms present; two are located on special positions, viz a twofold rotation axis and an inversion centre, and the third is located in a general position. The ZnII atom on the inversion centre is six-coordinated by four O atoms from four different benzene-1,2,3-tricarboxyl­ate anions and two OH anions. The ZnII atom located on a twofold axis is four coordinated by two O atoms from two different benzene-1,2,3-tricarboxyl­ate anions and two OH anions. The third ZnII atom, located in a general position, is five coordinated by three O atoms from three different benzene-1,2,3-tricarboxyl­ate anions, one OH anion and one water mol­ecule. Each benzene-1,2,3-tricarboxyl­ate anion bridges six ZnII atoms, and the OH anion bridges three ZnII atoms, resulting in the formation of a three-dimensional framework. A series of O—H⋯O hydrogen bonds involving the benzene-1,2,3-tricarboxyl­ate anions, the OH anion and the coordinating and the two water solvent mol­ecules further stablize the crystal structure. The two solvent water molecules show occupancies of 0.5 and 0.25.

Related literature

For complexes of benzene tricarb­oxy­lic acids, see: Chui et al. (1999[Chui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194-196.]); Majumder et al. (2005[Majumder, A., Shit, S., Choudhury, C. R., Batten, S. R., Pilet, G., Daro, N., Sutter, J.-P., Chattopadhyay, N. & Mitra, S. (2005). Inorg. Chim. Acta, 358, 3855-3864.]). For related structures, see: Wu et al. (2009[Wu, H., Zhang, L. P., Liu, H. Y., Yang, J. & Ma, J. F. (2009). Sci. China Ser. B Chem. 52, 1490.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C9H3O6)(OH)(H2O)]·0.5H2O

  • Mr = 381.89

  • Tetragonal, I 41 /a

  • a = 12.8412 (2) Å

  • c = 27.2647 (7) Å

  • V = 4495.85 (15) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 4.31 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.21 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.312, Tmax = 0.399

  • 9288 measured reflections

  • 2048 independent reflections

  • 1402 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 0.94

  • 2048 reflections

  • 198 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2W 0.86 (2) 2.37 (4) 3.121 (7) 146 (6)
O1W—H1WB⋯O2i 0.86 (2) 2.28 (5) 2.981 (6) 139 (6)
O1W—H1WB⋯O5ii 0.86 (2) 2.40 (4) 3.084 (6) 137 (5)
O7—H7O⋯O3iii 0.79 (2) 2.38 (2) 3.174 (5) 179 (5)
O2W—H2WA⋯O3Wiv 0.64 2.30 2.776 (18) 134
O3W—H3WA⋯O2Wv 0.86 1.94 2.776 (18) 164
O3W—H3WB⋯O4vi 0.90 2.24 2.811 (15) 121
Symmetry codes: (i) [-y+{\script{3\over 4}}, x-{\script{3\over 4}}, z+{\script{1\over 4}}]; (ii) -x+1, -y, -z+1; (iii) [y+{\script{1\over 4}}, -x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [-y+{\script{3\over 4}}, x-{\script{1\over 4}}, -z+{\script{3\over 4}}]; (v) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{3\over 4}}]; (vi) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound consists of three crystallographically unique ZnII cations, two of which are located on special positions, one benzene-1,2,3-tricarboxylate anion, an OH- anion (O7), a coordinated water molecule (O1W), and two disordered solvent water molecules (Fig. 1).

Atom Zn1 is located on an inversion center and is six coordinated by four oxygen atoms from four symmetry related 1,2,3-tricarboxybenzene anions and two symmetry related OH- anions. The Zn1—O(carboxylate) distances are 2.022 (4) and 2.199 (3) Å. The Zn1—O7(OH-) distance is 2.089 (3) Å. Atom Zn2, also located on a 2-fold axis, is four coordinated by two oxygen atoms from two symmetry related 1,2,3-tricarboxybenzene anions and two symmetry related OH- anions. The Zn2—O (carboxylate) and Zn2—O7 distances are 1.943 (4) Å and 1.948 (3) Å, respectively. Atom Zn3, locate in a general position, is five coordinated by three oxygen atoms from three different 1,2,3-tricarboxybenzene anions, one OH- anion and one water molecule (O1W). The Zn3—O(carboxylate) distances are 1.935 (4), 1.984 (3) and 2.008 (4) Å. The Zn3—O7 distance is 2.069 (4) Å, and the Zn3—O1W distance is 2.136 (5) Å. The Zn—O (carboxylate) distances are similar to those observed in related structures (Wu et al., 2009).

Each benzene-1,2,3-tricarboxylate anion bridges six ZnII centers, and the OH- anion bridges three ZnII centers, leading to the formation of an infinite three-dimensional framework (Fig. 2). A series of O—H···O hydrogen bonds (Table 1) involving the tricarboxybenzene anions, the OH- anion and the coordinating and two solvent water molecules (both of which are only partially occupied), further stabilize the crystal structure (Table 1).

Related literature top

For complexes of benzene tricarboxylic acids, see: Chui et al. (1999); Majumder et al. (2005). For related structures, see: Wu et al. (2009).

Experimental top

A mixture of benzene-1,2,3-tricarboxylic acid (0.063 g, 0.3 mmol), NaOH (0.036 g, 0.9 mmol), and Zn(Ac)2 (0.066 g, 0.3 mmol), in 10 ml H2O was sealed in 18 ml Teflon-lined stainless steel container. The container was heated to 433 K and held at that temperature for 72 h. It was then cooled to room temperature at a rate of 10 K per hour and block-like colourless crystals of the title compound were isolated.

Refinement top

C-bound H-atoms were included in calculated positions and were refined as riding atoms: C—H = 0.93 Å, with Uiso = 1.2Ueq (C). The OH- and water H atoms were located in difference Fourier maps and were refined with distance restraints of 0.86 (2) Å, or treated as riding atoms, all with Uiso(H) = 1.2Ueq(O). Water molecule O2W located on a 2-fold axis is 0.5 occupied, while water O3W is located in a general position is 0.25 occupied.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and Westrip (2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the coordination environments of the three ZnII centers and the 30% probability displacement ellipsoids [symmetry codes: (i) y + 1/4, -x + 1/4, z + 1/4; (ii) -y + 3/4, x - 1/4,- z + 3/4; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y - 1/2, z; (v) -y + 3/4, x - 3/4, z + 1/4].
[Figure 2] Fig. 2. A view along the b axis of the three-dimensional structure of the title compound [the solvent water molecules and the H atoms have been omitted for clarity].
Poly[[aqua-µ6-benzene-1,2,3-tricarboxylato-µ3-hydroxido-dizinc] hemihydrate] top
Crystal data top
[Zn2(C9H3O6)(OH)(H2O)]·0.5H2ODx = 2.257 Mg m3
Mr = 381.89Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 2048 reflections
Hall symbol: -I 4adθ = 2.8–25.3°
a = 12.8412 (2) ŵ = 4.31 mm1
c = 27.2647 (7) ÅT = 293 K
V = 4495.85 (15) Å3Block, colourless
Z = 160.28 × 0.23 × 0.21 mm
F(000) = 3024
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2048 independent reflections
Radiation source: fine-focus sealed tube1402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1515
Tmin = 0.312, Tmax = 0.399l = 2232
9288 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
2048 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.80 e Å3
8 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Zn2(C9H3O6)(OH)(H2O)]·0.5H2OZ = 16
Mr = 381.89Mo Kα radiation
Tetragonal, I41/aµ = 4.31 mm1
a = 12.8412 (2) ÅT = 293 K
c = 27.2647 (7) Å0.28 × 0.23 × 0.21 mm
V = 4495.85 (15) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2048 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1402 reflections with I > 2σ(I)
Tmin = 0.312, Tmax = 0.399Rint = 0.051
9288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0358 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.80 e Å3
2048 reflectionsΔρmin = 0.53 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.00000.50000.0208 (2)
Zn20.50000.25000.49263 (3)0.0250 (3)
Zn30.68168 (5)0.13663 (5)0.57097 (2)0.0274 (2)
O10.3829 (3)0.2239 (3)0.44919 (13)0.0350 (10)
O1W0.8258 (4)0.1142 (4)0.61415 (16)0.0569 (13)
O20.4505 (3)0.0690 (3)0.42997 (12)0.0275 (9)
O30.3919 (3)0.1070 (3)0.36657 (11)0.0224 (8)
O40.4706 (3)0.0068 (3)0.31306 (13)0.0326 (10)
O50.2600 (3)0.1066 (3)0.28024 (12)0.0312 (9)
O60.1945 (3)0.0076 (3)0.22700 (13)0.0411 (11)
O70.5375 (3)0.1373 (3)0.53706 (12)0.0209 (8)
C10.3132 (4)0.1383 (4)0.38044 (18)0.0250 (13)
C20.3150 (4)0.0597 (4)0.34414 (17)0.0201 (12)
C30.2429 (4)0.0677 (4)0.30533 (19)0.0273 (13)
C40.1747 (5)0.1498 (5)0.3023 (2)0.0485 (18)
H40.12960.15430.27570.058*
C50.1720 (6)0.2254 (5)0.3380 (3)0.061 (2)
H50.12510.28030.33570.074*
C60.2400 (5)0.2187 (5)0.3774 (2)0.0439 (17)
H60.23700.26850.40220.053*
C70.3880 (4)0.1430 (4)0.42282 (17)0.0239 (12)
C80.3973 (4)0.0242 (4)0.34212 (17)0.0197 (12)
C90.2329 (4)0.0172 (4)0.26799 (19)0.0246 (12)
O2W1.00000.25000.5664 (4)0.038 (3)0.50
H2WA0.99770.22030.54750.057*0.50
O3W0.0743 (12)0.3649 (12)0.2625 (5)0.038 (4)0.25
H3WA0.06080.32050.23960.057*0.25
H3WB0.03180.41940.25820.057*0.25
H1WA0.885 (3)0.124 (5)0.6006 (18)0.057*
H1WB0.825 (4)0.141 (5)0.6431 (11)0.057*
H7O0.493 (3)0.139 (4)0.5572 (14)0.019 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0265 (5)0.0185 (5)0.0174 (4)0.0003 (4)0.0020 (4)0.0024 (3)
Zn20.0434 (6)0.0173 (5)0.0143 (4)0.0014 (4)0.0000.000
Zn30.0421 (5)0.0242 (4)0.0159 (3)0.0009 (3)0.0057 (3)0.0027 (3)
O10.047 (3)0.030 (2)0.028 (2)0.007 (2)0.0119 (19)0.0136 (18)
O1W0.054 (3)0.073 (4)0.043 (3)0.000 (3)0.003 (2)0.007 (3)
O20.040 (2)0.028 (2)0.0146 (18)0.0088 (19)0.0061 (16)0.0001 (15)
O30.031 (2)0.021 (2)0.0149 (18)0.0029 (17)0.0013 (15)0.0002 (15)
O40.036 (2)0.037 (2)0.024 (2)0.0105 (19)0.0064 (18)0.0061 (17)
O50.047 (3)0.024 (2)0.0218 (19)0.0069 (19)0.0138 (18)0.0090 (16)
O60.062 (3)0.033 (2)0.028 (2)0.010 (2)0.025 (2)0.0059 (18)
O70.034 (2)0.018 (2)0.0101 (18)0.0017 (17)0.0051 (17)0.0005 (15)
C10.029 (3)0.021 (3)0.025 (3)0.003 (3)0.006 (2)0.000 (2)
C20.028 (3)0.016 (3)0.016 (3)0.001 (2)0.002 (2)0.005 (2)
C30.033 (3)0.021 (3)0.028 (3)0.002 (3)0.009 (3)0.002 (2)
C40.059 (5)0.035 (4)0.052 (4)0.009 (3)0.035 (4)0.008 (3)
C50.065 (5)0.041 (4)0.078 (5)0.029 (4)0.037 (4)0.020 (4)
C60.051 (4)0.032 (4)0.049 (4)0.009 (3)0.024 (3)0.016 (3)
C70.025 (3)0.033 (3)0.013 (3)0.005 (3)0.003 (2)0.000 (2)
C80.027 (3)0.021 (3)0.011 (2)0.001 (2)0.003 (2)0.004 (2)
C90.023 (3)0.026 (3)0.025 (3)0.001 (3)0.008 (2)0.001 (2)
O2W0.039 (7)0.030 (7)0.044 (7)0.018 (5)0.0000.000
O3W0.044 (11)0.037 (10)0.033 (9)0.004 (8)0.010 (8)0.014 (7)
Geometric parameters (Å, º) top
Zn1—O5i2.022 (4)O4—Zn3vi2.008 (4)
Zn1—O5ii2.022 (4)O5—C91.245 (6)
Zn1—O7iii2.089 (3)O5—Zn1vii2.022 (3)
Zn1—O72.089 (3)O6—C91.263 (6)
Zn1—O22.199 (3)O6—Zn3viii1.935 (4)
Zn1—O2iii2.199 (3)O7—H7O0.79 (2)
Zn2—O1iv1.943 (4)C1—C61.399 (8)
Zn2—O11.943 (4)C1—C21.413 (7)
Zn2—O71.948 (3)C1—C71.504 (7)
Zn2—O7iv1.948 (3)C2—C31.410 (7)
Zn3—O6i1.935 (4)C2—C81.511 (7)
Zn3—O3iii1.984 (3)C3—C41.373 (8)
Zn3—O4v2.008 (4)C3—C91.497 (7)
Zn3—O72.069 (4)C4—C51.374 (9)
Zn3—O1W2.213 (5)C4—H40.9300
O1—C71.265 (6)C5—C61.388 (9)
O1W—H1WA0.86 (2)C5—H50.9300
O1W—H1WB0.86 (2)C6—H60.9300
O2—C71.259 (6)O2W—H2WA0.6405
O3—C81.257 (6)O3W—H3WA0.8614
O3—Zn3iii1.984 (3)O3W—H3WB0.8960
O4—C81.250 (6)
O5i—Zn1—O5ii180.000 (1)C8—O4—Zn3vi123.3 (3)
O5i—Zn1—O7iii87.68 (15)C9—O5—Zn1vii135.5 (3)
O5ii—Zn1—O7iii92.32 (14)C9—O6—Zn3viii133.0 (4)
O5i—Zn1—O792.32 (14)Zn2—O7—Zn3120.15 (18)
O5ii—Zn1—O787.68 (15)Zn2—O7—Zn1105.62 (15)
O7iii—Zn1—O7180.00 (15)Zn3—O7—Zn1114.77 (16)
O5i—Zn1—O286.24 (15)Zn2—O7—H7O104 (4)
O5ii—Zn1—O293.76 (15)Zn3—O7—H7O110 (4)
O7iii—Zn1—O281.58 (13)Zn1—O7—H7O101 (4)
O7—Zn1—O298.42 (13)C6—C1—C2119.8 (5)
O5i—Zn1—O2iii93.76 (15)C6—C1—C7116.4 (5)
O5ii—Zn1—O2iii86.24 (15)C2—C1—C7123.8 (5)
O7iii—Zn1—O2iii98.42 (13)C3—C2—C1117.6 (5)
O7—Zn1—O2iii81.58 (13)C3—C2—C8118.9 (4)
O2—Zn1—O2iii180.000 (1)C1—C2—C8123.1 (4)
O1iv—Zn2—O1104.9 (2)C4—C3—C2121.3 (5)
O1iv—Zn2—O7108.41 (15)C4—C3—C9117.7 (5)
O1—Zn2—O7116.25 (16)C2—C3—C9120.9 (5)
O1iv—Zn2—O7iv116.25 (16)C3—C4—C5121.1 (6)
O1—Zn2—O7iv108.41 (15)C3—C4—H4119.5
O7—Zn2—O7iv103.1 (2)C5—C4—H4119.5
O6i—Zn3—O3iii135.77 (17)C4—C5—C6119.3 (6)
O6i—Zn3—O4v102.75 (17)C4—C5—H5120.4
O3iii—Zn3—O4v117.03 (14)C6—C5—H5120.4
O6i—Zn3—O798.68 (14)C5—C6—C1120.9 (6)
O3iii—Zn3—O787.62 (14)C5—C6—H6119.5
O4v—Zn3—O7107.46 (15)C1—C6—H6119.5
O6i—Zn3—O1W82.42 (17)O2—C7—O1124.3 (5)
O3iii—Zn3—O1W85.21 (16)O2—C7—C1119.8 (5)
O4v—Zn3—O1W81.20 (18)O1—C7—C1115.9 (5)
O7—Zn3—O1W170.65 (17)O4—C8—O3122.0 (5)
C7—O1—Zn2116.6 (3)O4—C8—C2115.0 (4)
Zn3—O1W—H1WA120 (4)O3—C8—C2123.0 (5)
Zn3—O1W—H1WB116 (4)O5—C9—O6125.4 (5)
H1WA—O1W—H1WB110 (3)O5—C9—C3117.7 (4)
C7—O2—Zn1128.5 (3)O6—C9—C3116.8 (5)
C8—O3—Zn3iii130.1 (3)H3WA—O3W—H3WB107.3
O1iv—Zn2—O1—C765.4 (4)C7—C1—C2—C84.3 (8)
O7—Zn2—O1—C754.3 (4)C1—C2—C3—C41.2 (9)
O7iv—Zn2—O1—C7169.8 (4)C8—C2—C3—C4172.1 (6)
O5i—Zn1—O2—C7141.0 (4)C1—C2—C3—C9174.2 (5)
O5ii—Zn1—O2—C739.0 (4)C8—C2—C3—C912.5 (8)
O7iii—Zn1—O2—C7130.8 (5)C2—C3—C4—C52.2 (11)
O7—Zn1—O2—C749.2 (5)C9—C3—C4—C5173.4 (7)
O2iii—Zn1—O2—C7117 (100)C3—C4—C5—C60.5 (12)
O1iv—Zn2—O7—Zn345.2 (2)C4—C5—C6—C12.0 (12)
O1—Zn2—O7—Zn3163.02 (17)C2—C1—C6—C52.9 (10)
O7iv—Zn2—O7—Zn378.55 (17)C7—C1—C6—C5175.8 (6)
O1iv—Zn2—O7—Zn186.51 (19)Zn1—O2—C7—O139.5 (7)
O1—Zn2—O7—Zn131.3 (2)Zn1—O2—C7—C1140.8 (4)
O7iv—Zn2—O7—Zn1149.7 (2)Zn2—O1—C7—O215.6 (7)
O6i—Zn3—O7—Zn291.9 (2)Zn2—O1—C7—C1164.2 (3)
O3iii—Zn3—O7—Zn2132.1 (2)C6—C1—C7—O2174.5 (5)
O4v—Zn3—O7—Zn214.5 (2)C2—C1—C7—O26.8 (8)
O1W—Zn3—O7—Zn2172.0 (9)C6—C1—C7—O15.7 (8)
O6i—Zn3—O7—Zn135.8 (2)C2—C1—C7—O1172.9 (5)
O3iii—Zn3—O7—Zn1100.22 (18)Zn3vi—O4—C8—O327.5 (7)
O4v—Zn3—O7—Zn1142.15 (16)Zn3vi—O4—C8—C2154.5 (3)
O1W—Zn3—O7—Zn160.3 (10)Zn3iii—O3—C8—O4156.6 (4)
O5i—Zn1—O7—Zn290.46 (18)Zn3iii—O3—C8—C225.5 (7)
O5ii—Zn1—O7—Zn289.54 (18)C3—C2—C8—O475.5 (6)
O7iii—Zn1—O7—Zn2118.7 (5)C1—C2—C8—O497.4 (6)
O2—Zn1—O7—Zn23.92 (19)C3—C2—C8—O3102.5 (6)
O2iii—Zn1—O7—Zn2176.08 (19)C1—C2—C8—O384.5 (7)
O5i—Zn1—O7—Zn344.24 (18)Zn1vii—O5—C9—O65.9 (9)
O5ii—Zn1—O7—Zn3135.76 (18)Zn1vii—O5—C9—C3171.8 (4)
O7iii—Zn1—O7—Zn3106.6 (3)Zn3viii—O6—C9—O527.8 (9)
O2—Zn1—O7—Zn3130.78 (17)Zn3viii—O6—C9—C3149.8 (4)
O2iii—Zn1—O7—Zn349.22 (17)C4—C3—C9—O5151.0 (6)
C6—C1—C2—C31.3 (8)C2—C3—C9—O524.6 (8)
C7—C1—C2—C3177.3 (5)C4—C3—C9—O626.8 (8)
C6—C1—C2—C8174.3 (5)C2—C3—C9—O6157.6 (5)
Symmetry codes: (i) y+3/4, x1/4, z+3/4; (ii) y+1/4, x+1/4, z+1/4; (iii) x+1, y, z+1; (iv) x+1, y1/2, z; (v) y+3/4, x3/4, z+1/4; (vi) y+3/4, x+3/4, z1/4; (vii) y+1/4, x1/4, z1/4; (viii) y+1/4, x+3/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2W0.86 (2)2.37 (4)3.121 (7)146 (6)
O1W—H1WB···O2v0.86 (2)2.28 (5)2.981 (6)139 (6)
O1W—H1WB···O5iii0.86 (2)2.40 (4)3.084 (6)137 (5)
O7—H7O···O3ii0.79 (2)2.38 (2)3.174 (5)179 (5)
O2W—H2WA···O3Wi0.642.302.776 (18)134
O3W—H3WA···O2Wviii0.861.942.776 (18)164
O3W—H3WB···O4ix0.902.242.811 (15)121
Symmetry codes: (i) y+3/4, x1/4, z+3/4; (ii) y+1/4, x+1/4, z+1/4; (iii) x+1, y, z+1; (v) y+3/4, x3/4, z+1/4; (viii) y+1/4, x+3/4, z+3/4; (ix) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C9H3O6)(OH)(H2O)]·0.5H2O
Mr381.89
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)12.8412 (2), 27.2647 (7)
V3)4495.85 (15)
Z16
Radiation typeMo Kα
µ (mm1)4.31
Crystal size (mm)0.28 × 0.23 × 0.21
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.312, 0.399
No. of measured, independent and
observed [I > 2σ(I)] reflections
9288, 2048, 1402
Rint0.051
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 0.94
No. of reflections2048
No. of parameters198
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008) and Westrip (2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2W0.86 (2)2.37 (4)3.121 (7)146 (6)
O1W—H1WB···O2i0.86 (2)2.28 (5)2.981 (6)139 (6)
O1W—H1WB···O5ii0.86 (2)2.40 (4)3.084 (6)137 (5)
O7—H7O···O3iii0.79 (2)2.38 (2)3.174 (5)179 (5)
O2W—H2WA···O3Wiv0.642.302.776 (18)134
O3W—H3WA···O2Wv0.861.942.776 (18)164
O3W—H3WB···O4vi0.902.242.811 (15)121
Symmetry codes: (i) y+3/4, x3/4, z+1/4; (ii) x+1, y, z+1; (iii) y+1/4, x+1/4, z+1/4; (iv) y+3/4, x1/4, z+3/4; (v) y+1/4, x+3/4, z+3/4; (vi) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank Jilin Agricultural Science and Technology College for support.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194–196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMajumder, A., Shit, S., Choudhury, C. R., Batten, S. R., Pilet, G., Daro, N., Sutter, J.-P., Chattopadhyay, N. & Mitra, S. (2005). Inorg. Chim. Acta, 358, 3855–3864.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Zhang, L. P., Liu, H. Y., Yang, J. & Ma, J. F. (2009). Sci. China Ser. B Chem. 52, 1490.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m103-m104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds