organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z,6Z)-4,6-Bis(4-meth­­oxy­benzyl­­idene)-2,2-di­methyl-1,3-dioxan-5-one

aOrganic Chemistry Laboratory, Chemistry and Chemical Engineering, Research Center of Iran, PO Box 14335-186, Tehran, Iran, and bFachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
*Correspondence e-mail: massa@chemie.uni-marburg.de, abaee@ccerci.ac.ir

(Received 3 January 2012; accepted 4 January 2012; online 11 January 2012)

The title compound, C22H22O5, crystallizes with two independent mol­ecules in the asymmetric unit, both of which possess pseudo-Cs symmetry. The central 1,3-dioxanone rings have envelope conformations, with the C atom bearing the two methyl groups at the flap. The benzene rings of the meth­oxy­benzyl­idene units, attached in the 4- and 6-positions on the central 1,3-dioxanone rings, are tilted in the same direction with dihedral angles varying between 8.2 (1) and 18.1 (1)°. The crystal packing is influenced by π-stacking inter­actions of the parallel displaced type [centroid–centroid distance of 3.723 (1) Å for mol­ecule 1 and 3.884 (1) Å for mol­ecule 2, with ring slippages of 1.432 and 1.613 Å, respectively] and the T-shaped type, with the long mol­ecular axes all aligned along [010].

Related literature

For the synthesis of bis­aryl­idenes of hetero- and homocyclic ketones, see: Abaee et al. (2008a[Abaee, M. S., Mojtahedi, M. M., Hamidi, V., Mesbah, A. W. & Massa, W. (2008a). Synthesis, pp. 2122-2126.],b[Abaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008b). J. Chem. Res. pp. 388-389.]). For the crystal structures of similar compounds, see: Abaee et al. (2012[Abaee, M. S., Massa, W., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o355.]); Nesterov et al. (2011[Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). Acta Cryst. E67, o760-o761.]); Shahani et al. (2010[Shahani, T., Fun, H.-K., Balaji, G. L., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o630-o631.]). For details concerning π-stacking inter­actions, see: Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O5

  • Mr = 366.39

  • Monoclinic, P 21 /c

  • a = 9.2400 (7) Å

  • b = 40.384 (4) Å

  • c = 10.1643 (8) Å

  • β = 91.988 (9)°

  • V = 3790.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.45 × 0.24 × 0.03 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.972, Tmax = 1.000

  • 28928 measured reflections

  • 6486 independent reflections

  • 3306 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.058

  • S = 0.87

  • 6486 reflections

  • 495 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg(II_2) is the centroid of ring II (C8–C13) of mol­ecule 2.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg(II_2)i 0.95 2.68 3.604 (2) 164
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: EXPOSE (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of our investigations on the synthesis of bisarylidenes of hetero- and homo-cyclic ketones (Abaee et al., 2008a,b), we herein report on the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (1 and 2, Fig. 1), both having pseudo-Cs symmetry. The bond distances and angles are close to those observed in similar compounds (Abaee et al., 2012; Nesterov et al., 2011; Shahani et al., 2010).

The two independent molecules differ mainly in the degree of bending of the benzene substituents with respect to the almost planar part of the central 1,3-dioxanone ring [plane I: (O1,C1-C3,O2); max. deviation 0.0584 (18) Å in molecule 1, and 0.0166 (18) Å in molecule 2], as shown in Fig. 1. The dihedral angles between this mean plane and the benzene rings, II [C8–C13] and III [C16–C21], are respectively, 17.4 (1) and 18.1 (1)° for molecule 1, and 15.7 (1) and 8.2 (1)° for molecule 2. The benzene rings are inclined to one another by 24.8 (1) in molecule 1, and 13.7 (1)° in molecule 2. Thus, molecule 2 is closer to planarity than molecule 1.

The crystal packing is influenced by π-stacking interactions (Hunter & Sanders, 1990) in a parallel displaced way concerning benzene ring II (C8–C13) and its symmetry equivalent in both independent molecules [symmetry center: -x, -y, -z+1 for molecule 1, and -x+1, -y+2, -z+2 for molecule 2]. The centroid-centroid distances are 3.723 (1) Å for molecule 1, and 3.884 (1) Å for molecule 2, with ring slippages of 1.432 and 1.613 Å, respectively. In addition, a T-shaped π-stacking contact is observed, involving the same benzene ring, II of molecule 1, via a C–H···π interaction with an equivalent benzene ring II of molecule 2 (Table 1). These interactions result in a mutually perpendicular orientation of molecules 1 and 2, and a parallel orientation of the benzene rings II of all molecules of type 1 to each other and all molecules of type 2 to each other. All the long axes of both molecules are oriented parallel to the [010] direction (Fig. 2).

Related literature top

For the synthesis of bisarylidenes of hetero- and homocyclic ketones, see: Abaee et al. (2008a,b). For the crystal structures of similar compounds, see: Abaee et al. (2012); Nesterov et al. (2011); Shahani et al. (2010). For details concerning π-stacking interactions, see: Hunter & Sanders (1990).

Experimental top

A mixture of 2,2-dimethyl-1,3-dioxan-5-one (2 mmol), 4-methoxybenzaldehyde (4 mmol), diethylamine (8 mmol), and MgBr2.OEt2 (0.2 mmol, 10 mol%) was stirred at room temperature under an atmosphere of argon for 2 h. The progress of the reaction was checked by TLC using a 1:4 mixture of EtOAc/hexane. At the end of the reaction, the mixture was diluted by CH2Cl2 and washed with brine. The organic layer was dried using Na2SO4 and concentrated under reduced pressure. The product was isolated (83%) by column chromatography over silicagel using a 1:4 mixture of EtOAc/hexane. The solid product was recrystallized from EtOAc, giving yellow plate-like crystals of the title compound.

Refinement top

All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C–H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k x Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: CELL (Stoe & Cie, 1999); data reduction: INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of the title compound, with atom numbering and 50% probability displacement ellipsoids (a,c); schematic views of the two independent molecules (omitting H atoms) approximately along the central ring mean plane [O1,C1-C3,O2] (b,d).
[Figure 2] Fig. 2. Crystal packing of the title compound [O atoms red; H atoms omitted for clarity].
(4Z,6Z)-4,6-Bis(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxan-5- one top
Crystal data top
C22H22O5F(000) = 1552
Mr = 366.39Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8001 reflections
a = 9.2400 (7) Åθ = 2.0–25.9°
b = 40.384 (4) ŵ = 0.09 mm1
c = 10.1643 (8) ÅT = 193 K
β = 91.988 (9)°Platelet, yellow
V = 3790.5 (6) Å30.45 × 0.24 × 0.03 mm
Z = 8
Data collection top
Stoe IPDS
diffractometer
6486 independent reflections
Radiation source: fine-focus sealed tube3306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 6.7 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ–scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 4848
Tmin = 0.972, Tmax = 1.000l = 1212
28928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
6486 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H22O5V = 3790.5 (6) Å3
Mr = 366.39Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.2400 (7) ŵ = 0.09 mm1
b = 40.384 (4) ÅT = 193 K
c = 10.1643 (8) Å0.45 × 0.24 × 0.03 mm
β = 91.988 (9)°
Data collection top
Stoe IPDS
diffractometer
6486 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3306 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 1.000Rint = 0.068
28928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.87Δρmax = 0.13 e Å3
6486 reflectionsΔρmin = 0.15 e Å3
495 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1_10.13652 (14)0.09396 (3)0.47980 (12)0.0350 (3)
O2_10.11486 (14)0.15136 (3)0.46692 (12)0.0373 (3)
O3_10.20552 (17)0.11456 (3)0.32822 (14)0.0513 (4)
O4_10.27071 (16)0.06434 (3)0.36675 (13)0.0474 (4)
O5_10.06933 (19)0.31337 (3)0.40567 (16)0.0695 (5)
C1_10.0103 (2)0.08847 (4)0.40709 (17)0.0312 (5)
C2_10.0809 (2)0.11758 (4)0.37529 (18)0.0345 (5)
C3_10.0170 (2)0.15054 (4)0.39966 (18)0.0327 (5)
C4_10.1442 (2)0.12406 (4)0.55320 (17)0.0318 (5)
C5_10.2989 (2)0.12787 (5)0.5977 (2)0.0465 (5)
H5A_10.36050.12730.52120.070*
H5B_10.32610.10970.65780.070*
H5C_10.31180.14910.64350.070*
C6_10.0396 (2)0.12348 (5)0.66347 (18)0.0452 (6)
H6A_10.05840.11930.62740.068*
H6B_10.04200.14490.70900.068*
H6C_10.06720.10590.72580.068*
C7_10.0214 (2)0.05840 (4)0.35759 (17)0.0338 (5)
H7_10.11120.05700.30950.041*
C8_10.0604 (2)0.02747 (4)0.36605 (17)0.0313 (5)
C9_10.1886 (2)0.02302 (4)0.43971 (19)0.0377 (5)
H9_10.22760.04110.48940.045*
C10_10.2614 (2)0.00718 (4)0.44252 (19)0.0391 (5)
H10_10.34860.00960.49400.047*
C11_10.2071 (2)0.03357 (4)0.37075 (19)0.0361 (5)
C12_10.0799 (2)0.02982 (5)0.29576 (19)0.0410 (5)
H12_10.04230.04780.24510.049*
C13_10.0080 (2)0.00014 (4)0.29488 (18)0.0374 (5)
H13_10.08000.00220.24430.045*
C14_10.3863 (2)0.07054 (5)0.4593 (2)0.0530 (6)
H14A_10.41490.09390.45450.079*
H14B_10.35470.06560.54820.079*
H14C_10.46910.05650.43920.079*
C15_10.0773 (2)0.17839 (4)0.35254 (19)0.0393 (5)
H15_10.16260.17540.29900.047*
C16_10.0316 (2)0.21270 (5)0.37103 (19)0.0392 (5)
C17_10.0991 (3)0.23727 (5)0.2980 (3)0.0814 (9)
H17_10.17310.23120.23540.098*
C18_10.0641 (3)0.27025 (6)0.3117 (3)0.0900 (10)
H18_10.11330.28630.25860.108*
C19_10.0407 (2)0.27998 (5)0.4012 (2)0.0472 (6)
C20_10.1084 (2)0.25658 (5)0.4774 (2)0.0513 (6)
H20_10.18030.26300.54160.062*
C21_10.0729 (2)0.22334 (5)0.4616 (2)0.0487 (6)
H21_10.12230.20740.51500.058*
C22_10.1718 (3)0.32471 (5)0.5016 (3)0.0716 (8)
H22A_10.18570.34860.49130.107*
H22B_10.26420.31330.49050.107*
H22C_10.13670.32010.58960.107*
O1_20.32537 (14)0.90895 (3)0.94767 (12)0.0394 (4)
O2_20.36036 (14)0.85187 (3)0.92517 (12)0.0393 (3)
O3_20.60877 (18)0.89453 (3)0.72449 (15)0.0632 (5)
O4_20.20381 (16)1.07102 (3)0.95326 (13)0.0498 (4)
O5_20.45844 (18)0.69115 (3)0.84894 (15)0.0636 (5)
C1_20.4331 (2)0.91701 (4)0.86175 (17)0.0349 (5)
C2_20.5116 (2)0.88934 (4)0.80197 (19)0.0400 (5)
C3_20.4737 (2)0.85542 (5)0.83962 (18)0.0360 (5)
C4_20.3432 (2)0.87840 (4)1.01609 (18)0.0355 (5)
C5_20.2014 (2)0.87194 (5)1.0805 (2)0.0542 (6)
H5A_20.12390.86991.01260.081*
H5B_20.17970.89031.13950.081*
H5C_20.20830.85131.13120.081*
C6_20.4701 (2)0.88003 (5)1.11275 (18)0.0491 (6)
H6A_20.55810.88541.06600.074*
H6B_20.48240.85851.15660.074*
H6C_20.45260.89711.17860.074*
C7_20.4550 (2)0.94842 (4)0.82629 (17)0.0369 (5)
H7_20.52850.95120.76410.044*
C8_20.3864 (2)0.97912 (4)0.86593 (18)0.0340 (5)
C9_20.2943 (2)0.98221 (4)0.97158 (18)0.0375 (5)
H9_20.27250.96311.02190.045*
C10_20.2337 (2)1.01245 (4)1.00494 (19)0.0389 (5)
H10_20.17401.01401.07890.047*
C11_20.2602 (2)1.04031 (4)0.93058 (19)0.0369 (5)
C12_20.3513 (2)1.03770 (5)0.82468 (19)0.0436 (5)
H12_20.37021.05670.77270.052*
C13_20.4136 (2)1.00793 (4)0.79498 (18)0.0394 (5)
H13_20.47751.00690.72380.047*
C14_20.1207 (3)1.07459 (5)1.0694 (2)0.0588 (7)
H14A_20.08751.09751.07660.088*
H14B_20.18121.06891.14720.088*
H14C_20.03671.05981.06360.088*
C15_20.5357 (2)0.82868 (4)0.78873 (18)0.0396 (5)
H15_20.60680.83340.72610.047*
C16_20.5129 (2)0.79356 (5)0.81271 (18)0.0384 (5)
C17_20.5856 (3)0.77038 (5)0.7371 (2)0.0535 (6)
H17_20.65000.77810.67290.064*
C18_20.5669 (3)0.73688 (5)0.7525 (2)0.0592 (7)
H18_20.61860.72190.69940.071*
C19_20.4736 (2)0.72471 (5)0.8443 (2)0.0466 (6)
C20_20.4040 (2)0.74698 (5)0.9235 (2)0.0445 (5)
H20_20.34250.73910.98950.053*
C21_20.4227 (2)0.78064 (5)0.90765 (19)0.0440 (5)
H21_20.37280.79540.96280.053*
C22_20.3599 (3)0.67802 (5)0.9400 (2)0.0658 (7)
H22A_20.35670.65390.93170.099*
H22B_20.26310.68720.92130.099*
H22C_20.39210.68401.02980.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1_10.0324 (9)0.0299 (7)0.0422 (8)0.0016 (6)0.0044 (7)0.0061 (6)
O2_10.0329 (9)0.0313 (7)0.0472 (8)0.0001 (6)0.0053 (7)0.0060 (6)
O3_10.0432 (11)0.0466 (8)0.0629 (10)0.0014 (7)0.0172 (9)0.0026 (7)
O4_10.0548 (10)0.0340 (8)0.0533 (9)0.0090 (7)0.0024 (8)0.0062 (6)
O5_10.0754 (13)0.0333 (8)0.0974 (13)0.0039 (8)0.0303 (11)0.0086 (8)
C1_10.0283 (13)0.0357 (11)0.0296 (10)0.0016 (9)0.0002 (10)0.0019 (8)
C2_10.0306 (13)0.0377 (12)0.0347 (11)0.0003 (10)0.0048 (11)0.0014 (9)
C3_10.0287 (13)0.0342 (11)0.0351 (11)0.0008 (9)0.0026 (10)0.0012 (9)
C4_10.0337 (13)0.0256 (10)0.0356 (11)0.0011 (9)0.0067 (10)0.0012 (8)
C5_10.0423 (14)0.0340 (11)0.0620 (14)0.0005 (10)0.0151 (12)0.0016 (10)
C6_10.0534 (15)0.0464 (12)0.0360 (12)0.0008 (11)0.0025 (11)0.0041 (10)
C7_10.0326 (12)0.0361 (11)0.0326 (11)0.0046 (9)0.0014 (10)0.0018 (8)
C8_10.0308 (13)0.0318 (10)0.0314 (10)0.0028 (9)0.0020 (10)0.0013 (8)
C9_10.0373 (14)0.0328 (11)0.0429 (12)0.0005 (9)0.0010 (11)0.0088 (9)
C10_10.0326 (13)0.0396 (12)0.0450 (12)0.0035 (10)0.0004 (11)0.0080 (9)
C11_10.0407 (14)0.0302 (11)0.0380 (12)0.0018 (9)0.0102 (11)0.0024 (9)
C12_10.0479 (15)0.0341 (11)0.0409 (12)0.0044 (10)0.0002 (12)0.0068 (9)
C13_10.0394 (14)0.0366 (11)0.0359 (11)0.0034 (9)0.0011 (10)0.0022 (9)
C14_10.0503 (16)0.0426 (12)0.0661 (16)0.0112 (11)0.0045 (14)0.0027 (11)
C15_10.0349 (13)0.0379 (12)0.0445 (12)0.0002 (10)0.0065 (10)0.0058 (9)
C16_10.0376 (14)0.0356 (11)0.0438 (12)0.0008 (10)0.0074 (11)0.0065 (9)
C17_10.096 (2)0.0414 (14)0.102 (2)0.0100 (14)0.0660 (18)0.0153 (13)
C18_10.105 (3)0.0406 (15)0.119 (2)0.0060 (15)0.074 (2)0.0229 (14)
C19_10.0454 (15)0.0329 (12)0.0625 (15)0.0001 (10)0.0108 (13)0.0072 (10)
C20_10.0544 (16)0.0376 (13)0.0602 (15)0.0036 (11)0.0202 (12)0.0043 (11)
C21_10.0537 (16)0.0347 (12)0.0565 (14)0.0059 (11)0.0147 (13)0.0075 (10)
C22_10.069 (2)0.0429 (14)0.101 (2)0.0042 (13)0.0219 (17)0.0129 (13)
O1_20.0422 (9)0.0335 (7)0.0431 (8)0.0003 (6)0.0078 (7)0.0037 (6)
O2_20.0422 (9)0.0346 (7)0.0414 (8)0.0036 (6)0.0037 (7)0.0064 (6)
O3_20.0748 (12)0.0501 (8)0.0671 (10)0.0040 (8)0.0366 (10)0.0040 (7)
O4_20.0613 (10)0.0346 (8)0.0542 (9)0.0054 (7)0.0112 (8)0.0083 (6)
O5_20.0791 (12)0.0335 (8)0.0788 (11)0.0083 (8)0.0117 (10)0.0005 (7)
C1_20.0367 (13)0.0365 (11)0.0316 (11)0.0030 (9)0.0023 (10)0.0006 (9)
C2_20.0452 (14)0.0377 (11)0.0371 (12)0.0014 (10)0.0015 (11)0.0031 (9)
C3_20.0379 (13)0.0392 (12)0.0307 (11)0.0009 (10)0.0012 (10)0.0033 (9)
C4_20.0432 (14)0.0260 (10)0.0376 (11)0.0023 (9)0.0047 (11)0.0020 (9)
C5_20.0527 (16)0.0427 (12)0.0687 (15)0.0015 (11)0.0248 (13)0.0001 (10)
C6_20.0623 (17)0.0491 (13)0.0357 (12)0.0031 (11)0.0038 (12)0.0002 (10)
C7_20.0391 (13)0.0397 (12)0.0318 (11)0.0067 (9)0.0006 (10)0.0017 (9)
C8_20.0368 (13)0.0314 (11)0.0336 (11)0.0042 (9)0.0033 (10)0.0020 (8)
C9_20.0423 (13)0.0342 (11)0.0360 (12)0.0042 (9)0.0004 (10)0.0057 (9)
C10_20.0445 (14)0.0340 (11)0.0383 (12)0.0009 (10)0.0030 (10)0.0046 (9)
C11_20.0393 (13)0.0310 (11)0.0401 (12)0.0012 (9)0.0042 (11)0.0015 (9)
C12_20.0505 (14)0.0361 (12)0.0443 (13)0.0066 (10)0.0021 (11)0.0093 (9)
C13_20.0436 (13)0.0377 (11)0.0369 (12)0.0065 (10)0.0038 (11)0.0024 (9)
C14_20.0650 (17)0.0450 (13)0.0681 (16)0.0081 (12)0.0236 (14)0.0004 (11)
C15_20.0435 (14)0.0407 (12)0.0343 (11)0.0030 (10)0.0011 (10)0.0037 (9)
C16_20.0396 (14)0.0409 (12)0.0340 (11)0.0044 (10)0.0068 (10)0.0037 (9)
C17_20.0683 (17)0.0409 (13)0.0519 (14)0.0055 (12)0.0126 (13)0.0073 (10)
C18_20.0732 (19)0.0417 (13)0.0634 (16)0.0142 (12)0.0136 (14)0.0076 (11)
C19_20.0526 (15)0.0330 (12)0.0535 (14)0.0092 (11)0.0086 (12)0.0029 (10)
C20_20.0501 (15)0.0385 (12)0.0447 (13)0.0059 (10)0.0007 (11)0.0007 (10)
C21_20.0489 (15)0.0405 (12)0.0426 (12)0.0067 (10)0.0000 (11)0.0074 (9)
C22_20.0771 (19)0.0446 (13)0.0756 (17)0.0009 (13)0.0013 (16)0.0070 (12)
Geometric parameters (Å, º) top
O1_1—C1_11.377 (2)O1_2—C1_21.386 (2)
O1_1—C4_11.427 (2)O1_2—C4_21.423 (2)
O2_1—C3_11.377 (2)O2_2—C3_21.392 (2)
O2_1—C4_11.429 (2)O2_2—C4_21.427 (2)
O3_1—C2_11.237 (2)O3_2—C2_21.233 (2)
O4_1—C11_11.376 (2)O4_2—C11_21.368 (2)
O4_1—C14_11.421 (3)O4_2—C14_21.438 (2)
O5_1—C19_11.375 (2)O5_2—C19_21.363 (2)
O5_1—C22_11.412 (3)O5_2—C22_21.423 (2)
C1_1—C7_11.343 (2)C1_2—C7_21.336 (2)
C1_1—C2_11.476 (3)C1_2—C2_21.474 (2)
C2_1—C3_11.474 (3)C2_2—C3_21.468 (3)
C3_1—C15_11.336 (3)C3_2—C15_21.335 (2)
C4_1—C5_11.493 (3)C4_2—C6_21.505 (3)
C4_1—C6_11.505 (2)C4_2—C5_21.508 (3)
C5_1—H5A_10.9800C5_2—H5A_20.9800
C5_1—H5B_10.9800C5_2—H5B_20.9800
C5_1—H5C_10.9800C5_2—H5C_20.9800
C6_1—H6A_10.9800C6_2—H6A_20.9800
C6_1—H6B_10.9800C6_2—H6B_20.9800
C6_1—H6C_10.9800C6_2—H6C_20.9800
C7_1—C8_11.461 (2)C7_2—C8_21.456 (2)
C7_1—H7_10.9500C7_2—H7_20.9500
C8_1—C9_11.391 (3)C8_2—C13_21.396 (2)
C8_1—C13_11.397 (2)C8_2—C9_21.399 (2)
C9_1—C10_11.392 (3)C9_2—C10_21.390 (2)
C9_1—H9_10.9500C9_2—H9_20.9500
C10_1—C11_11.376 (3)C10_2—C11_21.382 (2)
C10_1—H10_10.9500C10_2—H10_20.9500
C11_1—C12_11.387 (3)C11_2—C12_21.393 (2)
C12_1—C13_11.380 (3)C12_2—C13_21.371 (2)
C12_1—H12_10.9500C12_2—H12_20.9500
C13_1—H13_10.9500C13_2—H13_20.9500
C14_1—H14A_10.9800C14_2—H14A_20.9800
C14_1—H14B_10.9800C14_2—H14B_20.9800
C14_1—H14C_10.9800C14_2—H14C_20.9800
C15_1—C16_11.459 (3)C15_2—C16_21.455 (3)
C15_1—H15_10.9500C15_2—H15_20.9500
C16_1—C17_11.376 (3)C16_2—C21_21.398 (2)
C16_1—C21_11.379 (3)C16_2—C17_21.398 (2)
C17_1—C18_11.376 (3)C17_2—C18_21.373 (3)
C17_1—H17_10.9500C17_2—H17_20.9500
C18_1—C19_11.363 (3)C18_2—C19_21.383 (3)
C18_1—H18_10.9500C18_2—H18_20.9500
C19_1—C20_11.361 (3)C19_2—C20_21.380 (2)
C20_1—C21_11.390 (3)C20_2—C21_21.380 (3)
C20_1—H20_10.9500C20_2—H20_20.9500
C21_1—H21_10.9500C21_2—H21_20.9500
C22_1—H22A_10.9800C22_2—H22A_20.9800
C22_1—H22B_10.9800C22_2—H22B_20.9800
C22_1—H22C_10.9800C22_2—H22C_20.9800
C1_1—O1_1—C4_1116.33 (14)C1_2—O1_2—C4_2115.98 (14)
C3_1—O2_1—C4_1115.59 (14)C3_2—O2_2—C4_2115.48 (13)
C11_1—O4_1—C14_1116.85 (16)C11_2—O4_2—C14_2116.54 (14)
C19_1—O5_1—C22_1117.70 (18)C19_2—O5_2—C22_2117.48 (16)
C7_1—C1_1—O1_1121.09 (17)C7_2—C1_2—O1_2120.79 (16)
C7_1—C1_1—C2_1121.51 (19)C7_2—C1_2—C2_2121.82 (16)
O1_1—C1_1—C2_1117.13 (16)O1_2—C1_2—C2_2117.12 (15)
O3_1—C2_1—C3_1121.07 (18)O3_2—C2_2—C3_2120.72 (17)
O3_1—C2_1—C1_1121.52 (18)O3_2—C2_2—C1_2120.91 (16)
C3_1—C2_1—C1_1117.40 (19)C3_2—C2_2—C1_2118.35 (16)
C15_1—C3_1—O2_1120.54 (18)C15_2—C3_2—O2_2120.08 (17)
C15_1—C3_1—C2_1122.7 (2)C15_2—C3_2—C2_2122.99 (17)
O2_1—C3_1—C2_1116.61 (17)O2_2—C3_2—C2_2116.76 (16)
O1_1—C4_1—O2_1109.36 (14)O1_2—C4_2—O2_2110.35 (14)
O1_1—C4_1—C5_1106.03 (14)O1_2—C4_2—C6_2110.84 (16)
O2_1—C4_1—C5_1105.43 (15)O2_2—C4_2—C6_2110.73 (16)
O1_1—C4_1—C6_1110.76 (14)O1_2—C4_2—C5_2105.92 (16)
O2_1—C4_1—C6_1110.87 (15)O2_2—C4_2—C5_2105.59 (15)
C5_1—C4_1—C6_1114.12 (16)C6_2—C4_2—C5_2113.18 (17)
C4_1—C5_1—H5A_1109.5C4_2—C5_2—H5A_2109.5
C4_1—C5_1—H5B_1109.5C4_2—C5_2—H5B_2109.5
H5A_1—C5_1—H5B_1109.5H5A_2—C5_2—H5B_2109.5
C4_1—C5_1—H5C_1109.5C4_2—C5_2—H5C_2109.5
H5A_1—C5_1—H5C_1109.5H5A_2—C5_2—H5C_2109.5
H5B_1—C5_1—H5C_1109.5H5B_2—C5_2—H5C_2109.5
C4_1—C6_1—H6A_1109.5C4_2—C6_2—H6A_2109.5
C4_1—C6_1—H6B_1109.5C4_2—C6_2—H6B_2109.5
H6A_1—C6_1—H6B_1109.5H6A_2—C6_2—H6B_2109.5
C4_1—C6_1—H6C_1109.5C4_2—C6_2—H6C_2109.5
H6A_1—C6_1—H6C_1109.5H6A_2—C6_2—H6C_2109.5
H6B_1—C6_1—H6C_1109.5H6B_2—C6_2—H6C_2109.5
C1_1—C7_1—C8_1130.2 (2)C1_2—C7_2—C8_2131.48 (17)
C1_1—C7_1—H7_1114.9C1_2—C7_2—H7_2114.3
C8_1—C7_1—H7_1114.9C8_2—C7_2—H7_2114.3
C9_1—C8_1—C13_1116.77 (18)C13_2—C8_2—C9_2116.59 (17)
C9_1—C8_1—C7_1124.86 (17)C13_2—C8_2—C7_2118.59 (16)
C13_1—C8_1—C7_1118.38 (19)C9_2—C8_2—C7_2124.82 (16)
C8_1—C9_1—C10_1121.72 (18)C10_2—C9_2—C8_2121.77 (17)
C8_1—C9_1—H9_1119.1C10_2—C9_2—H9_2119.1
C10_1—C9_1—H9_1119.1C8_2—C9_2—H9_2119.1
C11_1—C10_1—C9_1120.0 (2)C11_2—C10_2—C9_2120.06 (17)
C11_1—C10_1—H10_1120.0C11_2—C10_2—H10_2120.0
C9_1—C10_1—H10_1120.0C9_2—C10_2—H10_2120.0
O4_1—C11_1—C10_1124.5 (2)O4_2—C11_2—C10_2124.74 (16)
O4_1—C11_1—C12_1115.93 (18)O4_2—C11_2—C12_2116.28 (16)
C10_1—C11_1—C12_1119.56 (18)C10_2—C11_2—C12_2118.98 (17)
C13_1—C12_1—C11_1119.87 (19)C13_2—C12_2—C11_2120.41 (17)
C13_1—C12_1—H12_1120.1C13_2—C12_2—H12_2119.8
C11_1—C12_1—H12_1120.1C11_2—C12_2—H12_2119.8
C12_1—C13_1—C8_1122.1 (2)C12_2—C13_2—C8_2122.14 (17)
C12_1—C13_1—H13_1119.0C12_2—C13_2—H13_2118.9
C8_1—C13_1—H13_1119.0C8_2—C13_2—H13_2118.9
O4_1—C14_1—H14A_1109.5O4_2—C14_2—H14A_2109.5
O4_1—C14_1—H14B_1109.5O4_2—C14_2—H14B_2109.5
H14A_1—C14_1—H14B_1109.5H14A_2—C14_2—H14B_2109.5
O4_1—C14_1—H14C_1109.5O4_2—C14_2—H14C_2109.5
H14A_1—C14_1—H14C_1109.5H14A_2—C14_2—H14C_2109.5
H14B_1—C14_1—H14C_1109.5H14B_2—C14_2—H14C_2109.5
C3_1—C15_1—C16_1129.6 (2)C3_2—C15_2—C16_2131.06 (18)
C3_1—C15_1—H15_1115.2C3_2—C15_2—H15_2114.5
C16_1—C15_1—H15_1115.2C16_2—C15_2—H15_2114.5
C17_1—C16_1—C21_1115.4 (2)C21_2—C16_2—C17_2116.04 (17)
C17_1—C16_1—C15_1119.5 (2)C21_2—C16_2—C15_2124.91 (16)
C21_1—C16_1—C15_1125.10 (19)C17_2—C16_2—C15_2119.04 (17)
C18_1—C17_1—C16_1122.9 (2)C18_2—C17_2—C16_2122.16 (19)
C18_1—C17_1—H17_1118.6C18_2—C17_2—H17_2118.9
C16_1—C17_1—H17_1118.6C16_2—C17_2—H17_2118.9
C19_1—C18_1—C17_1120.3 (2)C17_2—C18_2—C19_2120.72 (19)
C19_1—C18_1—H18_1119.8C17_2—C18_2—H18_2119.6
C17_1—C18_1—H18_1119.8C19_2—C18_2—H18_2119.6
C20_1—C19_1—C18_1118.8 (2)O5_2—C19_2—C20_2125.26 (19)
C20_1—C19_1—O5_1125.3 (2)O5_2—C19_2—C18_2116.33 (17)
C18_1—C19_1—O5_1115.9 (2)C20_2—C19_2—C18_2118.41 (18)
C19_1—C20_1—C21_1120.1 (2)C19_2—C20_2—C21_2120.74 (19)
C19_1—C20_1—H20_1119.9C19_2—C20_2—H20_2119.6
C21_1—C20_1—H20_1119.9C21_2—C20_2—H20_2119.6
C16_1—C21_1—C20_1122.4 (2)C20_2—C21_2—C16_2121.86 (17)
C16_1—C21_1—H21_1118.8C20_2—C21_2—H21_2119.1
C20_1—C21_1—H21_1118.8C16_2—C21_2—H21_2119.1
O5_1—C22_1—H22A_1109.5O5_2—C22_2—H22A_2109.5
O5_1—C22_1—H22B_1109.5O5_2—C22_2—H22B_2109.5
H22A_1—C22_1—H22B_1109.5H22A_2—C22_2—H22B_2109.5
O5_1—C22_1—H22C_1109.5O5_2—C22_2—H22C_2109.5
H22A_1—C22_1—H22C_1109.5H22A_2—C22_2—H22C_2109.5
H22B_1—C22_1—H22C_1109.5H22B_2—C22_2—H22C_2109.5
C4_1—O1_1—C1_1—C7_1165.65 (15)C4_2—O1_2—C1_2—C7_2157.74 (19)
C4_1—O1_1—C1_1—C2_120.2 (2)C4_2—O1_2—C1_2—C2_228.1 (2)
C7_1—C1_1—C2_1—O3_116.9 (3)C7_2—C1_2—C2_2—O3_25.9 (3)
O1_1—C1_1—C2_1—O3_1168.91 (16)O1_2—C1_2—C2_2—O3_2179.93 (19)
C7_1—C1_1—C2_1—C3_1162.07 (16)C7_2—C1_2—C2_2—C3_2175.7 (2)
O1_1—C1_1—C2_1—C3_112.1 (2)O1_2—C1_2—C2_2—C3_21.6 (3)
C4_1—O2_1—C3_1—C15_1157.51 (16)C4_2—O2_2—C3_2—C15_2153.85 (19)
C4_1—O2_1—C3_1—C2_126.6 (2)C4_2—O2_2—C3_2—C2_230.8 (2)
O3_1—C2_1—C3_1—C15_112.0 (3)O3_2—C2_2—C3_2—C15_23.3 (3)
C1_1—C2_1—C3_1—C15_1167.01 (17)C1_2—C2_2—C3_2—C15_2178.3 (2)
O3_1—C2_1—C3_1—O2_1172.26 (16)O3_2—C2_2—C3_2—O2_2178.54 (19)
C1_1—C2_1—C3_1—O2_18.7 (2)C1_2—C2_2—C3_2—O2_23.0 (3)
C1_1—O1_1—C4_1—O2_154.47 (19)C1_2—O1_2—C4_2—O2_255.1 (2)
C1_1—O1_1—C4_1—C5_1167.69 (14)C1_2—O1_2—C4_2—C6_267.95 (19)
C1_1—O1_1—C4_1—C6_168.01 (19)C1_2—O1_2—C4_2—C5_2168.92 (16)
C3_1—O2_1—C4_1—O1_158.03 (18)C3_2—O2_2—C4_2—O1_256.5 (2)
C3_1—O2_1—C4_1—C5_1171.65 (14)C3_2—O2_2—C4_2—C6_266.6 (2)
C3_1—O2_1—C4_1—C6_164.38 (19)C3_2—O2_2—C4_2—C5_2170.52 (16)
O1_1—C1_1—C7_1—C8_10.5 (3)O1_2—C1_2—C7_2—C8_22.7 (3)
C2_1—C1_1—C7_1—C8_1173.45 (16)C2_2—C1_2—C7_2—C8_2176.5 (2)
C1_1—C7_1—C8_1—C9_15.3 (3)C1_2—C7_2—C8_2—C13_2168.8 (2)
C1_1—C7_1—C8_1—C13_1174.35 (17)C1_2—C7_2—C8_2—C9_211.6 (4)
C13_1—C8_1—C9_1—C10_10.0 (3)C13_2—C8_2—C9_2—C10_20.4 (3)
C7_1—C8_1—C9_1—C10_1179.61 (15)C7_2—C8_2—C9_2—C10_2179.2 (2)
C8_1—C9_1—C10_1—C11_10.3 (3)C8_2—C9_2—C10_2—C11_22.0 (3)
C14_1—O4_1—C11_1—C10_110.7 (2)C14_2—O4_2—C11_2—C10_25.2 (3)
C14_1—O4_1—C11_1—C12_1169.49 (16)C14_2—O4_2—C11_2—C12_2174.45 (19)
C9_1—C10_1—C11_1—O4_1179.90 (15)C9_2—C10_2—C11_2—O4_2178.6 (2)
C9_1—C10_1—C11_1—C12_10.1 (3)C9_2—C10_2—C11_2—C12_21.7 (3)
O4_1—C11_1—C12_1—C13_1179.41 (15)O4_2—C11_2—C12_2—C13_2179.6 (2)
C10_1—C11_1—C12_1—C13_10.8 (3)C10_2—C11_2—C12_2—C13_20.1 (3)
C11_1—C12_1—C13_1—C8_11.1 (3)C11_2—C12_2—C13_2—C8_21.7 (3)
C9_1—C8_1—C13_1—C12_10.7 (3)C9_2—C8_2—C13_2—C12_21.4 (3)
C7_1—C8_1—C13_1—C12_1178.93 (15)C7_2—C8_2—C13_2—C12_2178.9 (2)
O2_1—C3_1—C15_1—C16_16.8 (3)O2_2—C3_2—C15_2—C16_24.7 (3)
C2_1—C3_1—C15_1—C16_1177.61 (16)C2_2—C3_2—C15_2—C16_2179.8 (2)
C3_1—C15_1—C16_1—C17_1171.0 (2)C3_2—C15_2—C16_2—C21_25.3 (4)
C3_1—C15_1—C16_1—C21_111.7 (3)C3_2—C15_2—C16_2—C17_2174.9 (2)
C21_1—C16_1—C17_1—C18_11.1 (4)C21_2—C16_2—C17_2—C18_21.6 (3)
C15_1—C16_1—C17_1—C18_1178.6 (2)C15_2—C16_2—C17_2—C18_2178.6 (2)
C16_1—C17_1—C18_1—C19_10.5 (5)C16_2—C17_2—C18_2—C19_20.3 (4)
C17_1—C18_1—C19_1—C20_10.8 (4)C22_2—O5_2—C19_2—C20_21.9 (3)
C17_1—C18_1—C19_1—O5_1178.9 (2)C22_2—O5_2—C19_2—C18_2178.2 (2)
C22_1—O5_1—C19_1—C20_13.6 (3)C17_2—C18_2—C19_2—O5_2177.7 (2)
C22_1—O5_1—C19_1—C18_1176.8 (2)C17_2—C18_2—C19_2—C20_22.4 (4)
C18_1—C19_1—C20_1—C21_11.4 (3)O5_2—C19_2—C20_2—C21_2177.6 (2)
O5_1—C19_1—C20_1—C21_1178.2 (2)C18_2—C19_2—C20_2—C21_22.5 (3)
C17_1—C16_1—C21_1—C20_10.5 (3)C19_2—C20_2—C21_2—C16_20.6 (3)
C15_1—C16_1—C21_1—C20_1177.87 (18)C17_2—C16_2—C21_2—C20_21.5 (3)
C19_1—C20_1—C21_1—C16_10.7 (3)C15_2—C16_2—C21_2—C20_2178.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg(II_2) is the centroid of ring II (C8–C13) of molecule 2.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg(II_2)i0.952.683.604 (2)164
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H22O5
Mr366.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)9.2400 (7), 40.384 (4), 10.1643 (8)
β (°) 91.988 (9)
V3)3790.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.24 × 0.03
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.972, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28928, 6486, 3306
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.058, 0.87
No. of reflections6486
No. of parameters495
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: EXPOSE (Stoe & Cie, 1999), CELL (Stoe & Cie, 1999), INTEGRATE (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg(II_2) is the centroid of ring II (C8–C13) of molecule 2.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg(II_2)i0.952.683.604 (2)164
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Science, Research and Technology of Iran for partial financial support of this work.

References

First citationAbaee, M. S., Massa, W., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbaee, M. S., Mojtahedi, M. M., Hamidi, V., Mesbah, A. W. & Massa, W. (2008a). Synthesis, pp. 2122–2126.  Web of Science CSD CrossRef Google Scholar
First citationAbaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008b). J. Chem. Res. pp. 388–389.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationNesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). Acta Cryst. E67, o760–o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Balaji, G. L., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o630–o631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds