organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(2-hy­dr­oxy­eth­yl)-2-(4-meth­­oxy­phen­yl)-1H-benzimidazole-5-carboxyl­ate monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: aisyah@usm.my

(Received 10 January 2012; accepted 11 January 2012; online 18 January 2012)

In the title mol­ecule, C19H20N2O4·H2O, the benzimidazole ring system is essentially planar [maximum deviation = 0.013 (11) Å] and is inclined to the 4-meth­oxy­phenyl ring by 30.98 (5)°. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecule link neighbouring mol­ecules, forming a two-dimensional network lying parallel to the bc plane. There are also C—H⋯π and ππ inter­actions present. The latter involve inversion-related benzimidazole rings with centroid–centroid distances of 3.5552 (8) and 3.7466 (8) Å.

Related literature

For the synthesis of the title compound, see: Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Wahab, H. A., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1590-o1591.]). For the biological activity of benzimidazole derivatives, see: Cosar & Julou (1959[Cosar, C. & Julou, L. (1959). Ann. Inst. Pasteur Paris, 96, 238-241.]); Gudmundsson et al. (1999[Gudmundsson, K. S., Drach, J. C., Wotring, L. L. & Townsend, L. B. (1999). J. Med. Chem. 40, 785-793.]); De Clercq et al. (1993[De Clercq, E., Robins, R. K. & Revankar, G. R. (1993). Editors. Advances in Antiviral Drug Design, Vol. 1, pp. 39-85. Greenwich: Jai.]); Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O4·H2O

  • Mr = 358.39

  • Monoclinic, P 21 /c

  • a = 10.6364 (11) Å

  • b = 9.5089 (10) Å

  • c = 19.3765 (17) Å

  • β = 112.899 (5)°

  • V = 1805.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.983

  • 13982 measured reflections

  • 3140 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.02

  • 3140 reflections

  • 249 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O4i 0.86 (2) 1.98 (2) 2.8165 (15) 165 (2)
O5—H5C⋯N2ii 0.85 (1) 1.95 (1) 2.8011 (15) 175 (2)
C15—H15ACg2iii 0.97 2.95 3.7247 (17) 138
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Given the significance of benzimidazole as apart of the purine nucleoside framework, drug design based on benzimidazoles is an interesting topic for synthetic medicinal chemists (Spasov et al., 1999). The unique biological activity of N-alkylated benzimidazole on treating diseases such as protozoal infections, like trichomoniasis (Cosar & Julou, 1959) as well as nucleoside analogues inhibiting viral infections, like 2,5,6-trichloro-1-(β-D-ribofuranosyl)benzimidazole (Gudmundsson et al., 1999) and ribavin (De Clercq et al., 1993), have been reported. Thus, in view of their importance, the crystal structure analysis of the title benzimidazole compound was carried out and the results are presented herein.

The title compound, (Fig. 1), is a benzimidazole derivative and is similiar to the p-tolyl derivative, ethyl 1-(2-hydroxylethyl)-2-p-tolyl-1H-benzimidazole-5-carboxylate, reported on by (Arumugam et al., 2010). The title compound is associated with one water molecule of crystallization. The bond lengths (Allen et al., 1987) and angles are in normal ranges and are comparable to those reported for the p-tolyl derivative mentioned above. The benzimidazole ring (N1/N2/C7—C13) is essentially planar with a maximum deviation of 0.013 (11) Å for atom C12. The phenyl ring is inclined at an angle of 30.98 (5)° to the benzimidazole mean plane.

In the crystal, the water molecule links the organic molecules via intermolecular O5—H5B···O4 and O5—H5C···N2 hydrogen bonds (Table 1), so forming a two dimensional network lieing parallel to the bc plane. An intermolecular C—H···Cg2 interaction is also observed (Table 1), and there are also ππ stacking interactions involving inversion related benzimidazole rings: Cg1···Cg3i = 3.552 (8) Å, Cg3···Cg3i = 3.7466 (8) Å [Cg1 and Cg3 are the centroids of rings (N1/N2/C7/C8/C13) and (C8—C13), respectively; symmetry code: (i) -x+1, -y, -z].

Related literature top

For the synthesis of the title compound, see: Arumugam et al. (2010). For the biological activity of benzimidazole derivatives, see: Cosar & Julou (1959); Gudmundsson et al. (1999); De Clercq et al. (1993); Spasov et al. (1999). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the method described by Arumugam et al. (2010). Colourless block-like crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in EtOAc

Refinement top

The water and the hydroxy H-atoms were located from difference Fourier map and were freely refined. The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering and displacement ellipsods drawn at the 40% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The O—H···O and O—H···N hydrogen bonds are shown as dashed lines.
Ethyl 1-(2-hydroxyethyl)-2-(4-methoxyphenyl)-1H-benzimidazole- 5-carboxylate monohydrate top
Crystal data top
C19H20N2O4·H2OF(000) = 760
Mr = 358.39Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9429 reflections
a = 10.6364 (11) Åθ = 2.9–25.0°
b = 9.5089 (10) ŵ = 0.10 mm1
c = 19.3765 (17) ÅT = 293 K
β = 112.899 (5)°Block, colourless
V = 1805.3 (3) Å30.35 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 2.9°
ϕ and ω scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.967, Tmax = 0.983l = 2321
13982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.7017P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H20N2O4·H2OV = 1805.3 (3) Å3
Mr = 358.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6364 (11) ŵ = 0.10 mm1
b = 9.5089 (10) ÅT = 293 K
c = 19.3765 (17) Å0.35 × 0.25 × 0.18 mm
β = 112.899 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2856 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.033
13982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3140 reflectionsΔρmin = 0.20 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03607 (9)0.11092 (10)0.10495 (5)0.0273 (2)
O20.13828 (10)0.11955 (10)0.02067 (5)0.0318 (2)
O31.05219 (9)0.64334 (10)0.19548 (5)0.0299 (2)
O40.56061 (11)0.49083 (10)0.20486 (5)0.0308 (2)
H4B0.5547 (19)0.4247 (16)0.2358 (9)0.055 (6)*
N10.54707 (10)0.27695 (10)0.04766 (5)0.0195 (2)
N20.53184 (10)0.24427 (10)0.06353 (6)0.0207 (2)
C10.79606 (13)0.37042 (14)0.14242 (7)0.0246 (3)
H1A0.77430.29300.16500.029*
C20.90530 (13)0.45375 (15)0.18365 (7)0.0277 (3)
H2A0.95600.43280.23370.033*
C30.94031 (12)0.56962 (14)0.15058 (7)0.0235 (3)
C40.86192 (13)0.60221 (13)0.07631 (7)0.0243 (3)
H4A0.88380.67990.05400.029*
C50.75072 (13)0.51868 (13)0.03529 (7)0.0231 (3)
H5A0.69790.54210.01420.028*
C60.71694 (12)0.40026 (13)0.06695 (7)0.0206 (3)
C70.59923 (12)0.30890 (12)0.02771 (7)0.0194 (3)
C80.43855 (12)0.18642 (12)0.06055 (7)0.0197 (3)
C90.34925 (13)0.12055 (13)0.12536 (7)0.0219 (3)
H9A0.35610.13320.17140.026*
C100.24989 (12)0.03538 (13)0.11789 (7)0.0224 (3)
H10A0.18750.00930.16000.027*
C110.24092 (12)0.01465 (12)0.04771 (7)0.0217 (3)
C120.33239 (12)0.07870 (12)0.01676 (7)0.0212 (3)
H12A0.32770.06340.06310.025*
C130.43118 (12)0.16652 (12)0.00957 (7)0.0196 (3)
C140.13541 (13)0.07845 (13)0.03903 (7)0.0234 (3)
C150.06792 (14)0.20632 (16)0.10130 (8)0.0328 (3)
H15A0.02960.29920.08580.039*
H15B0.10420.17230.06560.039*
C160.17773 (17)0.2119 (2)0.17790 (10)0.0550 (5)
H16A0.24630.27820.17850.082*
H16B0.21820.12050.19140.082*
H16C0.13950.24070.21310.082*
C171.10325 (14)0.74776 (15)0.15978 (7)0.0292 (3)
H17A1.18950.78190.19460.044*
H17B1.11480.70700.11730.044*
H17C1.03960.82430.14350.044*
C180.59596 (12)0.31970 (13)0.10568 (7)0.0213 (3)
H18A0.68920.35330.08220.026*
H18B0.59520.23930.13660.026*
C190.50589 (13)0.43538 (13)0.15438 (7)0.0235 (3)
H19A0.49710.51040.12260.028*
H19B0.41550.39790.18260.028*
O50.54527 (11)0.26408 (11)0.28926 (5)0.0342 (2)
H5B0.510 (2)0.1856 (14)0.2842 (12)0.062 (6)*
H5C0.542 (2)0.267 (2)0.3338 (7)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (5)0.0305 (5)0.0275 (5)0.0048 (4)0.0096 (4)0.0009 (4)
O20.0326 (5)0.0363 (5)0.0274 (5)0.0044 (4)0.0126 (4)0.0064 (4)
O30.0288 (5)0.0376 (5)0.0214 (5)0.0106 (4)0.0077 (4)0.0008 (4)
O40.0533 (6)0.0220 (5)0.0257 (5)0.0010 (4)0.0248 (5)0.0003 (4)
N10.0216 (5)0.0199 (5)0.0179 (5)0.0012 (4)0.0086 (4)0.0012 (4)
N20.0217 (5)0.0214 (5)0.0193 (5)0.0026 (4)0.0085 (4)0.0012 (4)
C10.0262 (6)0.0284 (7)0.0211 (6)0.0019 (5)0.0113 (5)0.0031 (5)
C20.0274 (7)0.0361 (7)0.0182 (6)0.0024 (6)0.0074 (5)0.0032 (5)
C30.0216 (6)0.0276 (6)0.0220 (6)0.0015 (5)0.0092 (5)0.0030 (5)
C40.0282 (7)0.0207 (6)0.0246 (6)0.0003 (5)0.0111 (5)0.0021 (5)
C50.0255 (6)0.0226 (6)0.0191 (6)0.0044 (5)0.0065 (5)0.0017 (5)
C60.0212 (6)0.0215 (6)0.0207 (6)0.0039 (5)0.0099 (5)0.0011 (5)
C70.0213 (6)0.0186 (6)0.0187 (6)0.0057 (5)0.0083 (5)0.0018 (5)
C80.0210 (6)0.0175 (6)0.0212 (6)0.0044 (5)0.0089 (5)0.0026 (5)
C90.0262 (6)0.0221 (6)0.0182 (6)0.0035 (5)0.0095 (5)0.0023 (5)
C100.0229 (6)0.0211 (6)0.0205 (6)0.0024 (5)0.0055 (5)0.0001 (5)
C110.0211 (6)0.0188 (6)0.0246 (6)0.0041 (5)0.0084 (5)0.0030 (5)
C120.0236 (6)0.0213 (6)0.0207 (6)0.0062 (5)0.0109 (5)0.0043 (5)
C130.0203 (6)0.0187 (6)0.0194 (6)0.0050 (5)0.0071 (5)0.0015 (5)
C140.0232 (6)0.0214 (6)0.0252 (7)0.0043 (5)0.0091 (5)0.0016 (5)
C150.0277 (7)0.0369 (8)0.0368 (8)0.0092 (6)0.0159 (6)0.0039 (6)
C160.0359 (9)0.0788 (13)0.0442 (10)0.0216 (9)0.0090 (8)0.0018 (9)
C170.0282 (7)0.0342 (7)0.0264 (7)0.0070 (6)0.0120 (6)0.0001 (6)
C180.0252 (6)0.0225 (6)0.0195 (6)0.0001 (5)0.0123 (5)0.0004 (5)
C190.0302 (7)0.0231 (6)0.0189 (6)0.0008 (5)0.0115 (5)0.0008 (5)
O50.0533 (6)0.0309 (5)0.0247 (5)0.0084 (5)0.0219 (5)0.0080 (4)
Geometric parameters (Å, º) top
O1—C141.3391 (16)C9—C101.3831 (18)
O1—C151.4533 (15)C9—H9A0.9300
O2—C141.2100 (16)C10—C111.4135 (18)
O3—C31.3633 (15)C10—H10A0.9300
O3—C171.4324 (16)C11—C121.3900 (18)
O4—C191.4200 (15)C11—C141.4895 (17)
O4—H4B0.854 (9)C12—C131.3909 (17)
N1—C71.3794 (15)C12—H12A0.9300
N1—C81.3825 (16)C15—C161.490 (2)
N1—C181.4677 (15)C15—H15A0.9700
N2—C71.3268 (16)C15—H15B0.9700
N2—C131.3838 (16)C16—H16A0.9600
C1—C21.3761 (19)C16—H16B0.9600
C1—C61.4033 (18)C16—H16C0.9600
C1—H1A0.9300C17—H17A0.9600
C2—C31.3961 (18)C17—H17B0.9600
C2—H2A0.9300C17—H17C0.9600
C3—C41.3887 (18)C18—C191.5215 (17)
C4—C51.3893 (18)C18—H18A0.9700
C4—H4A0.9300C18—H18B0.9700
C5—C61.3946 (17)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
C6—C71.4695 (17)O5—H5B0.855 (9)
C8—C91.3940 (17)O5—H5C0.852 (9)
C8—C131.4040 (17)
C14—O1—C15115.49 (10)C11—C12—C13117.71 (11)
C3—O3—C17116.68 (10)C11—C12—H12A121.1
C19—O4—H4B105.8 (13)C13—C12—H12A121.1
C7—N1—C8106.98 (10)N2—C13—C12129.62 (11)
C7—N1—C18129.31 (10)N2—C13—C8109.94 (10)
C8—N1—C18123.63 (10)C12—C13—C8120.44 (11)
C7—N2—C13105.60 (10)O2—C14—O1123.68 (12)
C2—C1—C6121.14 (12)O2—C14—C11124.06 (12)
C2—C1—H1A119.4O1—C14—C11112.26 (10)
C6—C1—H1A119.4O1—C15—C16106.87 (12)
C1—C2—C3120.24 (12)O1—C15—H15A110.3
C1—C2—H2A119.9C16—C15—H15A110.3
C3—C2—H2A119.9O1—C15—H15B110.3
O3—C3—C4124.72 (11)C16—C15—H15B110.3
O3—C3—C2115.81 (11)H15A—C15—H15B108.6
C4—C3—C2119.47 (11)C15—C16—H16A109.5
C3—C4—C5119.97 (12)C15—C16—H16B109.5
C3—C4—H4A120.0H16A—C16—H16B109.5
C5—C4—H4A120.0C15—C16—H16C109.5
C4—C5—C6121.18 (11)H16A—C16—H16C109.5
C4—C5—H5A119.4H16B—C16—H16C109.5
C6—C5—H5A119.4O3—C17—H17A109.5
C5—C6—C1117.97 (11)O3—C17—H17B109.5
C5—C6—C7124.27 (11)H17A—C17—H17B109.5
C1—C6—C7117.67 (11)O3—C17—H17C109.5
N2—C7—N1112.04 (10)H17A—C17—H17C109.5
N2—C7—C6121.88 (11)H17B—C17—H17C109.5
N1—C7—C6126.07 (11)N1—C18—C19110.49 (10)
N1—C8—C9132.13 (11)N1—C18—H18A109.6
N1—C8—C13105.44 (10)C19—C18—H18A109.6
C9—C8—C13122.43 (11)N1—C18—H18B109.6
C10—C9—C8116.70 (11)C19—C18—H18B109.6
C10—C9—H9A121.7H18A—C18—H18B108.1
C8—C9—H9A121.7O4—C19—C18111.58 (10)
C9—C10—C11121.52 (12)O4—C19—H19A109.3
C9—C10—H10A119.2C18—C19—H19A109.3
C11—C10—H10A119.2O4—C19—H19B109.3
C12—C11—C10121.19 (11)C18—C19—H19B109.3
C12—C11—C14116.97 (11)H19A—C19—H19B108.0
C10—C11—C14121.83 (11)H5B—O5—H5C107.1 (19)
C6—C1—C2—C30.6 (2)N1—C8—C9—C10179.73 (12)
C17—O3—C3—C49.95 (18)C13—C8—C9—C101.15 (17)
C17—O3—C3—C2170.04 (11)C8—C9—C10—C110.95 (17)
C1—C2—C3—O3178.34 (12)C9—C10—C11—C120.34 (18)
C1—C2—C3—C41.65 (19)C9—C10—C11—C14179.15 (11)
O3—C3—C4—C5179.16 (11)C10—C11—C12—C131.45 (17)
C2—C3—C4—C50.83 (19)C14—C11—C12—C13179.70 (10)
C3—C4—C5—C61.05 (18)C7—N2—C13—C12179.60 (12)
C4—C5—C6—C12.05 (18)C7—N2—C13—C80.40 (13)
C4—C5—C6—C7178.52 (11)C11—C12—C13—N2178.75 (11)
C2—C1—C6—C51.22 (18)C11—C12—C13—C81.25 (16)
C2—C1—C6—C7177.92 (11)N1—C8—C13—N20.62 (13)
C13—N2—C7—N10.02 (13)C9—C8—C13—N2179.95 (10)
C13—N2—C7—C6178.74 (10)N1—C8—C13—C12179.38 (10)
C8—N1—C7—N20.37 (13)C9—C8—C13—C120.05 (17)
C18—N1—C7—N2176.36 (11)C15—O1—C14—O22.88 (18)
C8—N1—C7—C6179.06 (11)C15—O1—C14—C11177.56 (10)
C18—N1—C7—C62.33 (19)C12—C11—C14—O212.75 (18)
C5—C6—C7—N2147.34 (12)C10—C11—C14—O2166.10 (12)
C1—C6—C7—N229.13 (16)C12—C11—C14—O1166.81 (10)
C5—C6—C7—N134.09 (18)C10—C11—C14—O114.34 (16)
C1—C6—C7—N1149.44 (12)C14—O1—C15—C16171.89 (13)
C7—N1—C8—C9179.82 (12)C7—N1—C18—C19103.77 (13)
C18—N1—C8—C92.86 (19)C8—N1—C18—C1979.98 (13)
C7—N1—C8—C130.59 (12)N1—C18—C19—O4172.67 (10)
C18—N1—C8—C13176.38 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.86 (2)1.98 (2)2.8165 (15)165 (2)
O5—H5C···N2ii0.85 (1)1.95 (1)2.8011 (15)175 (2)
C15—H15A···Cg2iii0.972.953.7247 (17)138
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H20N2O4·H2O
Mr358.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.6364 (11), 9.5089 (10), 19.3765 (17)
β (°) 112.899 (5)
V3)1805.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13982, 3140, 2856
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.02
No. of reflections3140
No. of parameters249
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.858 (16)1.979 (15)2.8165 (15)165 (2)
O5—H5C···N2ii0.851 (14)1.953 (14)2.8011 (15)174.9 (19)
C15—H15A···Cg2iii0.972.953.7247 (17)138
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

NA, HO and ASAR acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Grant (304/PFARMASI/650512). NA also thanks Universiti Sains Malaysia for a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Wahab, H. A., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1590–o1591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosar, C. & Julou, L. (1959). Ann. Inst. Pasteur Paris, 96, 238–241.  PubMed CAS Web of Science Google Scholar
First citationDe Clercq, E., Robins, R. K. & Revankar, G. R. (1993). Editors. Advances in Antiviral Drug Design, Vol. 1, pp. 39–85. Greenwich: Jai.  Google Scholar
First citationGudmundsson, K. S., Drach, J. C., Wotring, L. L. & Townsend, L. B. (1999). J. Med. Chem. 40, 785–793.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds