metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m194-m195

Bis{μ-2-[(4,6-bis­{(2-hy­droxy-5-methylphenyl)[(pyridin-2-yl)methyl]amino}-1,3,5-triazin-2-yl)[(pyridin-2-yl-κN)methyl]amino-κN]-4-methyl­phenolato-1:2κ2O:O}bis­­[(nitrato-κ2O,O′)zinc]–aceto­nitrile–water (2/4/1)

aLeiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands, bAdvanced Light Source, Lawrence Berkeley, National Laboratory, Berkeley, California 94720, USA, cInstituto de Ciencia de Materiales de Aragon, CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain, and dDepartment of Chemistry, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
*Correspondence e-mail: reedijk@chem.leidenuniv.nl

(Received 9 December 2011; accepted 12 December 2011; online 21 January 2012)

The title compound, [Zn2(C42H38N9O3)2(NO3)2]·2CH3CN·0.5H2O, is a bis-phenolate-bridged dinuclear ZnII complex. The asymmetric unit comprises half the zinc complex (the full complex is completed by the application of a centre of inversion), one acetonitrile solvent mol­ecule and a quarter of a water mol­ecule (located on a twofold axis with half-occupancy; H atoms were not located for this mol­ecule). Each triazine-based multidentate ligand uses a phenolate group to bridge ZnII ions, generating a Zn2O2 core. The ZnII ions are five-coordinate, with an additional long Zn—O contact [2.6465 (16) Å], and include a semi-bidentate nitrate ion and a N,N′,O-tridentate mode of the ligand in the coordination sphere. Non-coordinating pyridine groups form intra­molecular O—H⋯N hydrogen bonds with phenol groups. As suggested by the short O⋯O donor–acceptor distances between the disordered water molecules and phenol O atoms, these groups also participate in hydrogen bonding.

Related literature

For a related structure, see: Maheswari et al. (2007[Maheswari, P. U., Barends, S., Özalp-Yaman, S., de Hoog, P., Casellas, H., Teat, S. J., Massera, C., Lutz, M., Spek, A. L., van Wezel, G. P., Gamez, P. & Reedijk, J. (2007). Chem. Eur. J. 13, 5213-5222.]). For the synthesis of the ligand, see: de Hoog et al. (2002[Hoog, P. de, Gamez, P., Driessen, W. L. & Reedijk, J. (2002). Tetrahedron Lett. 43, 6783-6786.]); Gamez et al. (2003[Gamez, P., de Hoog, P., Lutz, M., Driessen, W. L., Spek, A. L. & Reedijk, J. (2003). Polyhedron, 22, 205-210.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C42H38N9O3)2(NO3)2]·2C2H3N·0.5H2O

  • Mr = 1779.53

  • Monoclinic, C 2/c

  • a = 31.154 (3) Å

  • b = 15.3768 (13) Å

  • c = 18.0060 (16) Å

  • β = 100.253 (2)°

  • V = 8488.0 (13) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.68940 Å

  • μ = 0.59 mm−1

  • T = 150 K

  • 0.16 × 0.04 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.87, Tmax = 0.93

  • 47083 measured reflections

  • 12791 independent reflections

  • 10387 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.06

  • 12791 reflections

  • 570 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9752 (10)
Zn1—O1i 2.0386 (10)
Zn1—O10 1.9743 (12)
Zn1—N4 2.4705 (12)
Zn1—N5 2.0066 (13)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N7 0.84 1.93 2.745 (2) 164
O3—H3⋯N9 0.84 1.87 2.688 (2) 164
O1w⋯O3     2.676 (3)  
O1w⋯O3ii     2.676 (3)  
Symmetry code: (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ligand 4,4',4''-trimethyl-2,2',2''-[(1,3,5-triazine-2,4,6-triyl)tris{[(pyridin-2-yl)methyl]imino}]triphenol is a potential multidentate ligand towards metal ions. Only with zinc nitrate was a reproducible crystalline compound obtained, and its three-dimensional structure is reported here. The resulting geometry for the zinc(II) ion, Fig. 1 and Table 1, is not unusual and resembles that of an earlier reported smaller fragment 4-methyl-2-[(2-pyridylmethyl)amino]phenol(Maheswari et al., 2007). The acetonitrile molecules fill the lattice space, as does a water molecule with 50% occupancy, albeit it H-bonded to 2 phenols, Table 2. The coordination around zinc is distorted square pyramidal, with a τ value (Addison et al., 1984) of 0.33; in addition a semi-coordinating oxygen from a chelating nitrate is present at 2.6465 (16) Å [Zn1···O12].

Related literature top

For a related structure, see: Maheswari et al. (2007). For the synthesis of the ligand, see: de Hoog et al. (2002); Gamez et al. (2003). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984).

Experimental top

The ligand 4,4',4''-trimethyl-2,2',2''-[(1,3,5-triazine-2,4,6-triyl)tris{[(pyridin-2-yl)methyl]imino}]triphenol was prepared by reacting 2,4,6-trichloro-1,3,5-triazine with 4-methyl-2-{[(pyridine-2-yl)methyl]amino}phenol in MeOH in the ratio 1:3, as described earlier for similar compounds (de Hoog et al., 2002; Gamez et al., 2003). The ligand (1 mmol, 0.720 g) was dissolved in warm acetonitrile and Zn(NO3)2 (H2O)3 (1 mmol, 0.2434 g), also dissolved in warm acetonitrile, was added drop wise to the solution of the ligand under stirring and then filtered. The resulting clear solution is colourless and light-yellow crystals were harvested after a week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). Hydrogen atoms could not be found or placed on O1w and were therefore not included the refinement. Significant Hirshfeld differences were noted for the N10—O10 and C33—C34 bonds. As the atom types are correct, these are probably due to the a rocking "motion" of the groups in question.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Zn2(H2L)2(NO3)2](CH3CN)2(H2O)0.5 showing the intramolecular O—H···N hydrogen bonding as dashed lines. Hydrogen atoms and lattice molecules have been omitted for clarity. Unlabelled atoms are related by symmetry operation 1-x, -y, 1-z.
Bis{µ-2-[(4,6-bis{(2-hydroxy-5-methylphenyl)[(pyridin-2-yl)methyl]amino}- 1,3,5-triazin-2-yl)[(pyridin-2-yl-κN)methyl]amino-κN]-4- methylphenolato-1:2κ2O}bis[(nitrato-κ2O,O')zinc]–acetonitrile–water (2/4/1) top
Crystal data top
[Zn2(C42H38N9O3)2(NO3)2]·2C2H3N·0.5H2OF(000) = 3696
Mr = 1779.53Dx = 1.393 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.68940 Å
Hall symbol: -C 2ycCell parameters from 7351 reflections
a = 31.154 (3) Åθ = 2.8–29.4°
b = 15.3768 (13) ŵ = 0.59 mm1
c = 18.0060 (16) ÅT = 150 K
β = 100.253 (2)°Parallelpiped, light-yellow
V = 8488.0 (13) Å30.16 × 0.04 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
12791 independent reflections
Radiation source: Daresbury SRS station 9.810387 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.039
ω rotation with narrow frames scansθmax = 29.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4344
Tmin = 0.87, Tmax = 0.93k = 2121
47083 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0554P)2 + 3.4344P]
where P = (Fo2 + 2Fc2)/3
12791 reflections(Δ/σ)max = 0.001
570 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn2(C42H38N9O3)2(NO3)2]·2C2H3N·0.5H2OV = 8488.0 (13) Å3
Mr = 1779.53Z = 4
Monoclinic, C2/cSynchrotron radiation, λ = 0.68940 Å
a = 31.154 (3) ŵ = 0.59 mm1
b = 15.3768 (13) ÅT = 150 K
c = 18.0060 (16) Å0.16 × 0.04 × 0.04 mm
β = 100.253 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
12791 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10387 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.93Rint = 0.039
47083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
12791 reflectionsΔρmin = 0.37 e Å3
570 parameters
Special details top

Geometry. Also a short hydrogen bond is seen for the half-occupied water to two phenol groups: O3—Ow 2.676 (3) Å.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.458384 (5)0.041228 (10)0.518223 (9)0.02346 (5)
C10.44079 (4)0.23008 (8)0.54547 (7)0.0209 (2)
N10.40078 (4)0.24336 (8)0.55736 (7)0.0243 (2)
C20.37475 (4)0.28245 (9)0.49918 (8)0.0229 (2)
N20.38661 (4)0.30793 (8)0.43508 (7)0.0246 (2)
C30.42888 (4)0.29428 (9)0.43300 (8)0.0231 (2)
N30.45848 (4)0.25762 (8)0.48758 (6)0.0231 (2)
N40.46675 (4)0.17411 (7)0.59659 (6)0.0215 (2)
C40.51379 (4)0.18675 (9)0.60775 (7)0.0222 (2)
C50.53898 (4)0.13243 (9)0.57023 (8)0.0239 (3)
O10.52016 (3)0.07228 (7)0.52085 (6)0.0254 (2)
C60.58419 (5)0.14437 (10)0.58511 (9)0.0293 (3)
H6A0.60210.10980.55940.035*
C70.60321 (5)0.20596 (10)0.63692 (9)0.0331 (3)
H7A0.63410.21140.64720.040*
C80.57822 (5)0.25999 (10)0.67413 (9)0.0307 (3)
C90.53309 (5)0.25013 (9)0.65745 (8)0.0261 (3)
H9A0.51520.28760.68060.031*
C100.59920 (6)0.32631 (12)0.73076 (11)0.0418 (4)
H10A0.62660.30290.75890.063*
H10B0.57940.33980.76590.063*
H10C0.60520.37940.70430.063*
C110.44937 (5)0.14906 (9)0.66421 (8)0.0244 (3)
H11A0.41950.17280.66000.029*
H11B0.46760.17620.70880.029*
C120.44780 (4)0.05271 (9)0.67719 (8)0.0251 (3)
C130.44166 (5)0.02155 (11)0.74728 (9)0.0336 (3)
H13A0.44000.06070.78750.040*
C140.43808 (7)0.06705 (13)0.75745 (11)0.0463 (4)
H14A0.43400.08940.80490.056*
C150.44043 (8)0.12283 (12)0.69819 (12)0.0512 (5)
H15A0.43790.18390.70400.061*
C160.44652 (6)0.08789 (11)0.63057 (11)0.0418 (4)
H16A0.44830.12600.58970.050*
N50.45009 (4)0.00152 (8)0.62001 (7)0.0282 (2)
N60.33232 (4)0.29589 (8)0.50585 (7)0.0258 (2)
O20.29522 (4)0.41085 (8)0.60279 (7)0.0409 (3)
H20.30060.42150.55960.061*
C170.31620 (4)0.26517 (10)0.57091 (8)0.0274 (3)
C180.29838 (5)0.32432 (11)0.61599 (9)0.0311 (3)
C190.28357 (5)0.29258 (12)0.67969 (9)0.0374 (4)
H19A0.27020.33130.70990.045*
C200.28802 (5)0.20607 (13)0.69934 (9)0.0391 (4)
H20A0.27850.18670.74380.047*
C210.30606 (5)0.14642 (12)0.65563 (10)0.0377 (4)
C220.31922 (5)0.17715 (11)0.59040 (9)0.0322 (3)
H22A0.33050.13730.55840.039*
C230.31110 (7)0.05114 (14)0.67629 (14)0.0536 (5)
H23A0.32540.04550.72910.080*
H23B0.32890.02250.64370.080*
H23C0.28230.02370.66940.080*
C240.30153 (4)0.31816 (10)0.43693 (8)0.0281 (3)
H24A0.27150.30830.44590.034*
H24B0.30640.27850.39600.034*
C250.30527 (4)0.41092 (10)0.41109 (9)0.0287 (3)
C260.30984 (5)0.43047 (11)0.33770 (9)0.0332 (3)
H26A0.31240.38520.30280.040*
C270.31063 (6)0.51666 (12)0.31593 (11)0.0389 (4)
H27A0.31360.53150.26590.047*
C280.30703 (6)0.58063 (12)0.36824 (11)0.0418 (4)
H28A0.30700.64030.35470.050*
C290.30344 (6)0.55613 (11)0.44057 (11)0.0419 (4)
H29A0.30160.60040.47670.050*
N70.30247 (5)0.47250 (9)0.46250 (8)0.0351 (3)
N80.44353 (4)0.31853 (8)0.36930 (7)0.0279 (2)
C300.41349 (5)0.33489 (11)0.30045 (8)0.0339 (3)
C310.41664 (7)0.41154 (14)0.26101 (11)0.0478 (5)
O30.44543 (6)0.47581 (11)0.28450 (11)0.0692 (5)
H30.46370.45840.32150.104*
C320.38783 (8)0.42351 (19)0.19253 (13)0.0664 (7)
H32A0.38950.47520.16430.080*
C330.35731 (8)0.3616 (2)0.16589 (12)0.0682 (7)
H33A0.33830.37150.11930.082*
C340.35332 (7)0.28482 (16)0.20493 (11)0.0535 (5)
C350.38230 (6)0.27290 (13)0.27274 (10)0.0404 (4)
H35A0.38070.22100.30070.048*
C360.31979 (9)0.2168 (2)0.17639 (15)0.0825 (9)
H36A0.32460.19540.12720.124*
H36B0.29060.24220.17100.124*
H36C0.32240.16830.21230.124*
C370.48971 (5)0.30312 (10)0.36586 (9)0.0306 (3)
H37A0.49400.30870.31290.037*
H37B0.49750.24290.38260.037*
C380.51987 (5)0.36585 (10)0.41449 (9)0.0313 (3)
C390.55425 (5)0.33806 (12)0.46840 (10)0.0383 (4)
H39A0.55950.27780.47710.046*
C400.58092 (6)0.39966 (13)0.50970 (12)0.0478 (4)
H40A0.60470.38220.54730.057*
C410.57254 (7)0.48598 (14)0.49561 (14)0.0532 (5)
H41A0.59060.52940.52270.064*
C420.53723 (7)0.50866 (13)0.44110 (14)0.0532 (5)
H42A0.53120.56860.43170.064*
N90.51116 (5)0.44982 (9)0.40105 (9)0.0405 (3)
N100.38032 (5)0.07108 (9)0.43434 (9)0.0395 (3)
O100.41860 (4)0.08881 (8)0.42993 (7)0.0374 (3)
O110.35018 (5)0.09345 (12)0.38307 (11)0.0715 (5)
O120.37223 (5)0.03042 (9)0.49054 (9)0.0512 (3)
N1S0.30136 (12)0.78257 (19)0.4472 (2)0.1195 (12)
C1S0.28966 (9)0.85082 (18)0.43433 (18)0.0727 (8)
C2S0.27491 (11)0.9365 (2)0.4163 (3)0.1041 (12)
H2S10.29500.96570.38830.156*
H2S20.27370.96870.46290.156*
H2S30.24570.93450.38510.156*
O1W0.50000.5976 (3)0.25000.0740 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02159 (8)0.02630 (9)0.02305 (9)0.00057 (6)0.00550 (6)0.00004 (6)
C10.0212 (6)0.0200 (5)0.0206 (6)0.0003 (4)0.0016 (4)0.0014 (4)
N10.0206 (5)0.0284 (6)0.0237 (6)0.0014 (4)0.0032 (4)0.0023 (4)
C20.0206 (6)0.0217 (6)0.0260 (6)0.0006 (5)0.0027 (5)0.0007 (5)
N20.0234 (5)0.0263 (6)0.0237 (6)0.0022 (4)0.0029 (4)0.0017 (4)
C30.0242 (6)0.0226 (6)0.0224 (6)0.0005 (5)0.0040 (5)0.0002 (5)
N30.0220 (5)0.0248 (5)0.0226 (5)0.0012 (4)0.0041 (4)0.0013 (4)
N40.0187 (5)0.0258 (5)0.0199 (5)0.0009 (4)0.0033 (4)0.0022 (4)
C40.0199 (6)0.0248 (6)0.0209 (6)0.0010 (5)0.0011 (4)0.0020 (5)
C50.0221 (6)0.0242 (6)0.0248 (6)0.0013 (5)0.0028 (5)0.0031 (5)
O10.0223 (4)0.0265 (5)0.0281 (5)0.0018 (4)0.0062 (4)0.0038 (4)
C60.0221 (6)0.0295 (7)0.0365 (8)0.0004 (5)0.0057 (5)0.0034 (6)
C70.0215 (6)0.0353 (8)0.0403 (8)0.0053 (6)0.0007 (6)0.0060 (6)
C80.0301 (7)0.0297 (7)0.0295 (7)0.0071 (6)0.0024 (6)0.0034 (6)
C90.0275 (7)0.0249 (6)0.0244 (7)0.0010 (5)0.0010 (5)0.0015 (5)
C100.0387 (9)0.0403 (9)0.0417 (9)0.0125 (7)0.0060 (7)0.0029 (7)
C110.0255 (6)0.0287 (7)0.0192 (6)0.0006 (5)0.0048 (5)0.0007 (5)
C120.0216 (6)0.0301 (7)0.0241 (6)0.0010 (5)0.0050 (5)0.0005 (5)
C130.0370 (8)0.0387 (8)0.0274 (7)0.0039 (6)0.0115 (6)0.0012 (6)
C140.0649 (12)0.0420 (9)0.0384 (9)0.0031 (9)0.0265 (9)0.0099 (8)
C150.0794 (14)0.0304 (8)0.0531 (12)0.0030 (9)0.0369 (11)0.0074 (8)
C160.0603 (11)0.0284 (8)0.0436 (10)0.0030 (7)0.0278 (8)0.0004 (7)
N50.0314 (6)0.0267 (6)0.0286 (6)0.0011 (5)0.0113 (5)0.0007 (5)
N60.0188 (5)0.0311 (6)0.0271 (6)0.0016 (4)0.0028 (4)0.0047 (5)
O20.0510 (7)0.0345 (6)0.0394 (7)0.0020 (5)0.0145 (6)0.0057 (5)
C170.0184 (6)0.0332 (7)0.0298 (7)0.0013 (5)0.0020 (5)0.0036 (6)
C180.0264 (7)0.0370 (8)0.0287 (7)0.0048 (6)0.0016 (5)0.0025 (6)
C190.0325 (8)0.0511 (10)0.0287 (8)0.0092 (7)0.0060 (6)0.0064 (7)
C200.0289 (8)0.0590 (11)0.0284 (8)0.0105 (7)0.0023 (6)0.0072 (7)
C210.0231 (7)0.0458 (9)0.0426 (9)0.0026 (6)0.0017 (6)0.0149 (7)
C220.0215 (6)0.0357 (8)0.0392 (8)0.0019 (6)0.0051 (6)0.0080 (6)
C230.0389 (10)0.0548 (12)0.0685 (14)0.0053 (8)0.0135 (9)0.0319 (10)
C240.0201 (6)0.0310 (7)0.0312 (7)0.0004 (5)0.0007 (5)0.0043 (6)
C250.0202 (6)0.0304 (7)0.0334 (8)0.0026 (5)0.0006 (5)0.0037 (6)
C260.0284 (7)0.0350 (8)0.0361 (8)0.0038 (6)0.0055 (6)0.0051 (6)
C270.0350 (8)0.0411 (9)0.0406 (9)0.0018 (7)0.0070 (7)0.0119 (7)
C280.0421 (9)0.0321 (8)0.0485 (10)0.0019 (7)0.0006 (8)0.0092 (7)
C290.0464 (10)0.0316 (8)0.0451 (10)0.0003 (7)0.0014 (8)0.0000 (7)
N70.0368 (7)0.0328 (7)0.0340 (7)0.0005 (5)0.0021 (6)0.0036 (5)
N80.0279 (6)0.0340 (6)0.0224 (6)0.0060 (5)0.0065 (4)0.0046 (5)
C300.0343 (8)0.0455 (9)0.0224 (7)0.0131 (7)0.0067 (6)0.0043 (6)
C310.0452 (10)0.0592 (12)0.0395 (10)0.0119 (9)0.0089 (8)0.0206 (9)
O30.0639 (10)0.0611 (10)0.0773 (12)0.0008 (8)0.0022 (9)0.0417 (9)
C320.0593 (14)0.0960 (19)0.0440 (12)0.0224 (13)0.0092 (10)0.0364 (12)
C330.0544 (13)0.120 (2)0.0269 (9)0.0290 (14)0.0009 (8)0.0068 (11)
C340.0477 (11)0.0789 (15)0.0306 (9)0.0197 (10)0.0023 (8)0.0115 (9)
C350.0397 (9)0.0509 (10)0.0287 (8)0.0133 (7)0.0014 (6)0.0050 (7)
C360.0671 (16)0.108 (2)0.0594 (15)0.0119 (15)0.0233 (12)0.0309 (15)
C370.0304 (7)0.0370 (8)0.0266 (7)0.0062 (6)0.0109 (6)0.0033 (6)
C380.0315 (7)0.0340 (7)0.0318 (8)0.0005 (6)0.0145 (6)0.0041 (6)
C390.0335 (8)0.0372 (8)0.0441 (9)0.0057 (6)0.0065 (7)0.0077 (7)
C400.0394 (9)0.0517 (11)0.0507 (11)0.0141 (8)0.0034 (8)0.0045 (9)
C410.0501 (11)0.0463 (10)0.0660 (14)0.0170 (9)0.0178 (10)0.0099 (10)
C420.0546 (12)0.0328 (9)0.0757 (15)0.0051 (8)0.0209 (11)0.0002 (9)
N90.0421 (8)0.0330 (7)0.0493 (9)0.0022 (6)0.0158 (7)0.0056 (6)
N100.0492 (9)0.0289 (7)0.0376 (8)0.0086 (6)0.0001 (6)0.0016 (6)
O100.0399 (6)0.0382 (6)0.0310 (6)0.0015 (5)0.0020 (5)0.0014 (5)
O110.0415 (8)0.0744 (11)0.0861 (12)0.0037 (7)0.0226 (8)0.0281 (9)
O120.0466 (8)0.0519 (8)0.0579 (9)0.0067 (6)0.0169 (7)0.0065 (7)
N1S0.137 (3)0.0659 (17)0.172 (3)0.0061 (17)0.072 (2)0.0190 (19)
C1S0.0600 (14)0.0625 (16)0.105 (2)0.0031 (12)0.0395 (15)0.0205 (15)
C2S0.0685 (19)0.0724 (19)0.175 (4)0.0003 (15)0.031 (2)0.005 (2)
O1W0.096 (4)0.046 (2)0.094 (4)0.0000.052 (3)0.000
Geometric parameters (Å, º) top
Zn1—Zn1i3.0607 (4)C21—C231.513 (3)
Zn1—O11.9752 (10)C22—H22A0.9500
Zn1—O1i2.0386 (10)C23—H23A0.9800
Zn1—O101.9743 (12)C23—H23B0.9800
Zn1—N42.4705 (12)C23—H23C0.9800
Zn1—N52.0066 (13)C24—H24A0.9900
C1—N11.3176 (17)C24—H24B0.9900
C1—N31.3320 (17)C24—C251.511 (2)
C1—N41.4061 (16)C25—C261.387 (2)
N1—C21.3467 (17)C25—N71.338 (2)
C2—N21.3319 (18)C26—H26A0.9500
C2—N61.3642 (17)C26—C271.384 (2)
N2—C31.3405 (17)C27—H27A0.9500
C3—N31.3460 (17)C27—C281.380 (3)
C3—N81.3598 (18)C28—H28A0.9500
N4—C41.4563 (16)C28—C291.379 (3)
N4—C111.4693 (17)C29—H29A0.9500
C4—C51.3994 (19)C29—N71.347 (2)
C4—C91.3860 (19)N8—C301.4363 (19)
C5—O11.3433 (17)N8—C371.4704 (19)
C5—C61.3982 (19)C30—C311.389 (3)
O1—Zn1i2.0386 (10)C30—C351.389 (3)
C6—H6A0.9500C31—O31.351 (3)
C6—C71.386 (2)C31—C321.402 (3)
C7—H7A0.9500O3—H30.8400
C7—C81.390 (2)C32—H32A0.9500
C8—C91.393 (2)C32—C331.370 (4)
C8—C101.507 (2)C33—H33A0.9500
C9—H9A0.9500C33—C341.391 (4)
C10—H10A0.9800C34—C351.395 (2)
C10—H10B0.9800C34—C361.503 (4)
C10—H10C0.9800C35—H35A0.9500
C11—H11A0.9900C36—H36A0.9800
C11—H11B0.9900C36—H36B0.9800
C11—C121.502 (2)C36—H36C0.9800
C12—C131.395 (2)C37—H37A0.9900
C12—N51.3367 (19)C37—H37B0.9900
C13—H13A0.9500C37—C381.512 (2)
C13—C141.382 (2)C38—C391.379 (2)
C14—H14A0.9500C38—N91.333 (2)
C14—C151.381 (3)C39—H39A0.9500
C15—H15A0.9500C39—C401.386 (3)
C15—C161.375 (2)C40—H40A0.9500
C16—H16A0.9500C40—C411.368 (3)
C16—N51.349 (2)C41—H41A0.9500
N6—C171.4342 (19)C41—C421.382 (3)
N6—C241.4677 (18)C42—H42A0.9500
O2—H20.8400C42—N91.338 (3)
O2—C181.352 (2)N10—O101.240 (2)
C17—C181.398 (2)N10—O111.2425 (19)
C17—C221.397 (2)N10—O121.253 (2)
C18—C191.398 (2)N1S—C1S1.122 (4)
C19—H19A0.9500C1S—C2S1.414 (4)
C19—C201.377 (3)C2S—H2S10.9800
C20—H20A0.9500C2S—H2S20.9800
C20—C211.391 (3)C2S—H2S30.9800
C21—C221.394 (2)
Zn1i—Zn1—N4117.24 (3)C19—C20—C21121.61 (15)
Zn1i—Zn1—O141.08 (3)H20A—C20—C21119.2
Zn1i—Zn1—O1i39.55 (3)C20—C21—C22117.54 (16)
Zn1i—Zn1—N5108.17 (4)C20—C21—C23122.29 (17)
Zn1i—Zn1—O10114.54 (4)C22—C21—C23120.17 (18)
N4—Zn1—O177.47 (4)C17—C22—C21121.56 (16)
N4—Zn1—O1i153.84 (4)C17—C22—H22A119.2
N4—Zn1—N576.52 (4)C21—C22—H22A119.2
N4—Zn1—O1098.09 (4)C21—C23—H23A109.5
O1—Zn1—O1i80.63 (4)C21—C23—H23B109.5
O1—Zn1—N5109.92 (5)C21—C23—H23C109.5
O1i—Zn1—N597.94 (5)H23A—C23—H23B109.5
O1—Zn1—O10113.52 (5)H23A—C23—H23C109.5
O1i—Zn1—O10103.70 (5)H23B—C23—H23C109.5
N5—Zn1—O10133.83 (5)N6—C24—H24A108.8
N1—C1—N3127.81 (12)N6—C24—H24B108.8
N1—C1—N4116.05 (12)N6—C24—C25113.95 (12)
N3—C1—N4115.90 (11)H24A—C24—H24B107.7
C1—N1—C2113.50 (12)H24A—C24—C25108.8
N1—C2—N2125.73 (12)H24B—C24—C25108.8
N1—C2—N6117.24 (12)C24—C25—C26121.63 (14)
N2—C2—N6117.02 (12)C24—C25—N7115.90 (14)
C2—N2—C3113.80 (12)C26—C25—N7122.43 (14)
N2—C3—N3126.44 (12)C25—C26—H26A120.4
N2—C3—N8117.36 (12)C25—C26—C27119.18 (16)
N3—C3—N8116.20 (12)H26A—C26—C27120.4
C1—N3—C3112.29 (11)C26—C27—H27A120.6
Zn1—N4—C198.19 (8)C26—C27—C28118.79 (17)
Zn1—N4—C4100.98 (8)H27A—C27—C28120.6
Zn1—N4—C11103.86 (8)C27—C28—H28A120.7
C1—N4—C4117.14 (11)C27—C28—C29118.68 (16)
C1—N4—C11116.68 (11)H28A—C28—C29120.7
C4—N4—C11115.52 (10)C28—C29—H29A118.4
N4—C4—C5119.39 (12)C28—C29—N7123.18 (17)
N4—C4—C9119.55 (12)H29A—C29—N7118.4
C5—C4—C9121.01 (12)C25—N7—C29117.72 (15)
C4—C5—O1120.94 (12)C3—N8—C30120.74 (12)
C4—C5—C6117.48 (13)C3—N8—C37117.98 (12)
O1—C5—C6121.56 (13)C30—N8—C37118.94 (12)
Zn1—O1—Zn1i99.37 (4)N8—C30—C31119.71 (16)
Zn1—O1—C5119.40 (8)N8—C30—C35119.77 (15)
Zn1i—O1—C5133.36 (9)C31—C30—C35120.50 (16)
C5—C6—H6A119.5C30—C31—O3124.36 (17)
C5—C6—C7120.94 (14)C30—C31—C32117.9 (2)
H6A—C6—C7119.5O3—C31—C32117.69 (19)
C6—C7—H7A119.2C31—O3—H3109.5
C6—C7—C8121.58 (13)C31—C32—H32A119.6
H7A—C7—C8119.2C31—C32—C33120.8 (2)
C7—C8—C9117.50 (14)H32A—C32—C33119.6
C7—C8—C10121.21 (14)C32—C33—H33A119.0
C9—C8—C10121.29 (15)C32—C33—C34122.10 (19)
C4—C9—C8121.41 (14)H33A—C33—C34119.0
C4—C9—H9A119.3C33—C34—C35116.8 (2)
C8—C9—H9A119.3C33—C34—C36122.5 (2)
C8—C10—H10A109.5C35—C34—C36120.7 (2)
C8—C10—H10B109.5C30—C35—C34121.77 (19)
C8—C10—H10C109.5C30—C35—H35A119.1
H10A—C10—H10B109.5C34—C35—H35A119.1
H10A—C10—H10C109.5C34—C36—H36A109.5
H10B—C10—H10C109.5C34—C36—H36B109.5
N4—C11—H11A108.6C34—C36—H36C109.5
N4—C11—H11B108.6H36A—C36—H36B109.5
N4—C11—C12114.49 (11)H36A—C36—H36C109.5
H11A—C11—H11B107.6H36B—C36—H36C109.5
H11A—C11—C12108.6N8—C37—H37A109.1
H11B—C11—C12108.6N8—C37—H37B109.1
C11—C12—C13119.56 (13)N8—C37—C38112.62 (12)
C11—C12—N5119.20 (12)H37A—C37—H37B107.8
C13—C12—N5121.16 (14)H37A—C37—C38109.1
C12—C13—H13A120.5H37B—C37—C38109.1
C12—C13—C14119.08 (15)C37—C38—C39122.31 (15)
H13A—C13—C14120.5C37—C38—N9115.30 (15)
C13—C14—H14A120.2C39—C38—N9122.38 (16)
C13—C14—C15119.56 (16)C38—C39—H39A120.6
H14A—C14—C15120.2C38—C39—C40118.83 (17)
C14—C15—H15A120.8H39A—C39—C40120.6
C14—C15—C16118.44 (17)C39—C40—H40A120.4
H15A—C15—C16120.8C39—C40—C41119.16 (19)
C15—C16—H16A118.7H40A—C40—C41120.4
C15—C16—N5122.51 (16)C40—C41—H41A120.7
H16A—C16—N5118.7C40—C41—C42118.56 (19)
Zn1—N5—C12122.17 (10)H41A—C41—C42120.7
Zn1—N5—C16118.59 (11)C41—C42—H42A118.6
C12—N5—C16119.25 (13)C41—C42—N9122.84 (19)
C2—N6—C17120.51 (12)H42A—C42—N9118.6
C2—N6—C24117.30 (12)C38—N9—C42118.22 (17)
C17—N6—C24119.75 (11)O10—N10—O11120.00 (16)
H2—O2—C18109.5O10—N10—O12119.72 (15)
N6—C17—C18119.53 (13)O11—N10—O12120.29 (17)
N6—C17—C22120.43 (14)Zn1—O10—N10109.88 (10)
C18—C17—C22120.03 (14)N1S—C1S—C2S178.7 (4)
O2—C18—C17124.20 (14)C1S—C2S—H2S1109.5
O2—C18—C19117.62 (15)C1S—C2S—H2S2109.5
C17—C18—C19118.17 (15)C1S—C2S—H2S3109.5
C18—C19—H19A119.5H2S1—C2S—H2S2109.5
C18—C19—C20121.01 (16)H2S1—C2S—H2S3109.5
H19A—C19—C20119.5H2S2—C2S—H2S3109.5
C19—C20—H20A119.2
N3—C1—N1—C26.8 (2)Zn1i—Zn1—N5—C1658.76 (13)
N4—C1—N1—C2167.31 (11)N4—Zn1—N5—C126.92 (11)
C1—N1—C2—N21.0 (2)N4—Zn1—N5—C16173.40 (13)
C1—N1—C2—N6177.80 (12)O1—Zn1—N5—C1278.01 (12)
N1—C2—N2—C32.4 (2)O1i—Zn1—N5—C12160.88 (11)
N6—C2—N2—C3178.78 (12)O1—Zn1—N5—C16102.31 (13)
C2—N2—C3—N30.9 (2)O1i—Zn1—N5—C1619.44 (13)
C2—N2—C3—N8179.95 (12)O10—Zn1—N5—C1281.38 (13)
N1—C1—N3—C38.0 (2)O10—Zn1—N5—C1698.30 (14)
N4—C1—N3—C3166.17 (11)N1—C2—N6—C173.09 (19)
N2—C3—N3—C13.7 (2)N1—C2—N6—C24165.36 (12)
N8—C3—N3—C1175.39 (12)N2—C2—N6—C17175.86 (12)
N1—C1—N4—Zn199.82 (11)N2—C2—N6—C2413.59 (18)
N1—C1—N4—C4153.32 (12)C2—N6—C17—C18121.40 (15)
N1—C1—N4—C1110.25 (17)C2—N6—C17—C2256.99 (19)
N3—C1—N4—Zn175.03 (11)C24—N6—C17—C1876.76 (18)
N3—C1—N4—C431.83 (16)C24—N6—C17—C22104.84 (16)
N3—C1—N4—C11174.90 (11)N6—C17—C18—O20.3 (2)
Zn1i—Zn1—N4—C1121.41 (7)N6—C17—C18—C19179.01 (13)
Zn1i—Zn1—N4—C41.58 (8)C22—C17—C18—O2178.12 (14)
Zn1i—Zn1—N4—C11118.40 (7)C22—C17—C18—C190.6 (2)
O1—Zn1—N4—C1110.80 (8)O2—C18—C19—C20176.18 (14)
O1i—Zn1—N4—C1144.67 (9)C17—C18—C19—C202.6 (2)
O1—Zn1—N4—C49.03 (7)C18—C19—C20—C212.1 (2)
O1i—Zn1—N4—C424.84 (13)C19—C20—C21—C220.6 (2)
O1—Zn1—N4—C11129.01 (8)C19—C20—C21—C23179.86 (16)
O1i—Zn1—N4—C1195.15 (11)C20—C21—C22—C172.6 (2)
N5—Zn1—N4—C1134.86 (8)C23—C21—C22—C17178.07 (15)
N5—Zn1—N4—C4105.31 (8)N6—C17—C22—C21176.34 (13)
N5—Zn1—N4—C1114.68 (8)C18—C17—C22—C212.1 (2)
O10—Zn1—N4—C11.61 (8)C2—N6—C24—C2575.79 (16)
O10—Zn1—N4—C4121.44 (8)C17—N6—C24—C25121.81 (14)
O10—Zn1—N4—C11118.57 (8)N6—C24—C25—C26128.15 (15)
Zn1—N4—C4—C55.41 (13)N6—C24—C25—N753.93 (17)
Zn1—N4—C4—C9172.18 (11)C24—C25—C26—C27176.35 (14)
C1—N4—C4—C599.81 (15)N7—C25—C26—C271.4 (2)
C1—N4—C4—C982.59 (15)C25—C26—C27—C280.3 (2)
C11—N4—C4—C5116.69 (14)C26—C27—C28—C291.0 (3)
C11—N4—C4—C960.91 (16)C27—C28—C29—N71.2 (3)
N4—C4—C5—O13.88 (19)C24—C25—N7—C29176.73 (14)
N4—C4—C5—C6177.27 (12)C26—C25—N7—C291.2 (2)
C9—C4—C5—O1178.56 (12)C28—C29—N7—C250.2 (3)
C9—C4—C5—C60.3 (2)N2—C3—N8—C3016.9 (2)
C4—C5—O1—Zn114.20 (17)N2—C3—N8—C37179.36 (13)
C4—C5—O1—Zn1i156.31 (10)N3—C3—N8—C30162.23 (13)
C6—C5—O1—Zn1167.00 (10)N3—C3—N8—C370.23 (19)
C6—C5—O1—Zn1i24.9 (2)C3—N8—C30—C31129.60 (17)
Zn1i—Zn1—O1—C5153.10 (12)C3—N8—C30—C3552.2 (2)
N4—Zn1—O1—Zn1i165.58 (5)C37—N8—C30—C3168.1 (2)
N4—Zn1—O1—C512.48 (9)C37—N8—C30—C35110.11 (17)
O1i—Zn1—O1—Zn1i0.0N8—C30—C31—O33.0 (3)
O1i—Zn1—O1—C5153.10 (12)N8—C30—C31—C32177.53 (17)
N5—Zn1—O1—Zn1i95.12 (5)C35—C30—C31—O3178.76 (19)
N5—Zn1—O1—C557.98 (11)C35—C30—C31—C320.7 (3)
O10—Zn1—O1—Zn1i100.96 (5)C30—C31—C32—C330.5 (3)
O10—Zn1—O1—C5105.95 (10)O3—C31—C32—C33178.9 (2)
C4—C5—C6—C72.0 (2)C31—C32—C33—C340.1 (4)
O1—C5—C6—C7179.19 (14)C32—C33—C34—C350.6 (3)
C5—C6—C7—C82.1 (2)C32—C33—C34—C36179.7 (2)
C6—C7—C8—C90.0 (2)N8—C30—C35—C34178.04 (15)
C6—C7—C8—C10179.56 (15)C31—C30—C35—C340.2 (3)
N4—C4—C9—C8175.07 (12)C33—C34—C35—C300.5 (3)
C5—C4—C9—C82.5 (2)C36—C34—C35—C30179.80 (19)
C7—C8—C9—C42.3 (2)C3—N8—C37—C3873.87 (17)
C10—C8—C9—C4177.28 (14)C30—N8—C37—C38123.35 (15)
Zn1—N4—C11—C1220.18 (13)N8—C37—C38—C39125.93 (16)
C1—N4—C11—C12126.93 (13)N8—C37—C38—N954.71 (17)
C4—N4—C11—C1289.40 (14)C37—C38—C39—C40178.78 (16)
N4—C11—C12—C13165.30 (13)N9—C38—C39—C400.5 (3)
N4—C11—C12—N518.10 (18)C38—C39—C40—C410.3 (3)
C11—C12—C13—C14176.79 (15)C39—C40—C41—C420.9 (3)
N5—C12—C13—C140.3 (2)C40—C41—C42—N90.7 (3)
C12—C13—C14—C150.3 (3)C37—C38—N9—C42178.61 (16)
C13—C14—C15—C160.3 (3)C39—C38—N9—C420.7 (3)
C14—C15—C16—N50.3 (3)C41—C42—N9—C380.1 (3)
C11—C12—N5—Zn12.92 (18)O11—N10—O10—Zn1178.20 (14)
C11—C12—N5—C16176.76 (14)O12—N10—O10—Zn11.63 (18)
C13—C12—N5—Zn1179.46 (11)Zn1i—Zn1—O10—N10138.72 (9)
C13—C12—N5—C160.2 (2)N4—Zn1—O10—N1096.31 (10)
C15—C16—N5—Zn1179.46 (17)O1—Zn1—O10—N10176.11 (10)
C15—C16—N5—C120.2 (3)O1i—Zn1—O10—N1098.28 (10)
Zn1i—Zn1—N5—C12121.56 (11)N5—Zn1—O10—N1017.26 (14)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N70.841.932.745 (2)164
O3—H3···N90.841.872.688 (2)164
O1w···O32.676 (3)
O1w···O3ii2.676 (3)
Symmetry code: (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C42H38N9O3)2(NO3)2]·2C2H3N·0.5H2O
Mr1779.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)31.154 (3), 15.3768 (13), 18.0060 (16)
β (°) 100.253 (2)
V3)8488.0 (13)
Z4
Radiation typeSynchrotron, λ = 0.68940 Å
µ (mm1)0.59
Crystal size (mm)0.16 × 0.04 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.87, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
47083, 12791, 10387
Rint0.039
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.06
No. of reflections12791
No. of parameters570
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9752 (10)Zn1—N42.4705 (12)
Zn1—O1i2.0386 (10)Zn1—N52.0066 (13)
Zn1—O101.9743 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N70.841.932.745 (2)164
O3—H3···N90.841.872.688 (2)164
O1w···O3..2.676 (3).
O1w···O3ii..2.676 (3).
Symmetry code: (ii) x+1, y, z+1/2.
 

Footnotes

Current address: Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India.

Acknowledgements

The authors are indebted to Professor Patrick Gamez (ICREA, Barcelona) for many useful suggestions in the early stages of this research. The work described in this paper was supported by the Leiden University Study group WFMO (Werkgroep Fundamenteel Materialen Onderzoek).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationGamez, P., de Hoog, P., Lutz, M., Driessen, W. L., Spek, A. L. & Reedijk, J. (2003). Polyhedron, 22, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoog, P. de, Gamez, P., Driessen, W. L. & Reedijk, J. (2002). Tetrahedron Lett. 43, 6783–6786.  Google Scholar
First citationMaheswari, P. U., Barends, S., Özalp-Yaman, S., de Hoog, P., Casellas, H., Teat, S. J., Massera, C., Lutz, M., Spek, A. L., van Wezel, G. P., Gamez, P. & Reedijk, J. (2007). Chem. Eur. J. 13, 5213–5222.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m194-m195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds