organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N-[(benz­yl­oxy)thio­carbon­yl]carbamate

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 19 December 2011; accepted 28 December 2011; online 7 January 2012)

In the title compound, C11H13NO3S, the dihedral angle between the benzyl and carbamate groups is 12.67 (10)°. The S atom and the carbonyl O atom are positioned anti to each other. In the crystal, pairs of N—H⋯S hydrogen bonds link mol­ecules into inversion dimers.

Related literature

For the synthesis and reactivity of pyrimidine and its derivatives, see: Cho et al. (1996[Cho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201-1206.]); Ra et al. (1999[Ra, D. Y., Cho, N. S., Kang, S. K., Choi, E. S. & Suh, I. H. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 81-83.]). For the synthesis of oxadiazole derivatives, see: Renaut et al. (1991[Renaut, P., Thomas, D. & Bellamy, F. D. (1991). Synthesis, pp. 265-266.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO3S

  • Mr = 239.28

  • Triclinic, [P \overline 1]

  • a = 6.608 (4) Å

  • b = 7.963 (7) Å

  • c = 12.369 (6) Å

  • α = 87.451 (13)°

  • β = 80.725 (17)°

  • γ = 77.324 (18)°

  • V = 626.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.956

  • 13629 measured reflections

  • 2930 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.02

  • 2930 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯S10i 0.83 (2) 2.66 (2) 3.481 (2) 174.3 (17)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Within the framework of our systematic studies to obtain new analogues of pyrimidine and their derivatives, we reported the synthesis and reactivity of 5-amino-2H-1,2,4-thiadiazolin-3-one and 5-amino-2H-1,2,4-oxadiazolin-3-one (Cho et al., 1996; Ra et al., 1999). These compounds are 5-membered analogues of cytosine on the basis of the well known analogy between a –CH CH– group in a benzenoid hydrocarbon and either the divalent oxygen or sulfur in their oxygen- and sulfur-containing counterparts, respectively. On the same basis, 1,2,4-oxadiazolidine-3,5-dione is 5-membered analog of uracil. The title compound, ethyl N-(Benzyloxythiocarbonyl)carbamate (I) is an intermediate for the formation of 3-benzyloxy-1,2,4-oxadiazole-5-one and 1,2,4-oxadiazolidine-3,5-dione (Renaut et al., 1991).

In (I), the benzyl unit is almost planar, with an r.m.s. deviation of 0.020 Å from the corresponding least-squares plane defined by the seven constituent atoms. The dihedral angle between the benzyl unit (C1—C7 atoms) and the carbamate group (N11—O14 atoms) is 12.67 (10)°. The S10 and carbonyl-O13 atoms are positioned anti to each other (Fig. 1). The intermolecular N11—H···S10i [symmetry codes: (i) -x + 2, -y + 1, -z + 1] hydrogen bonds link two molecules into a centrosymmetric dimer (Fig. 2 and Table 1), which stabilizes the crystal structure.

Related literature top

For the synthesis and reactivity of pyrimidine and its derivatives, see: Cho et al. (1996); Ra et al. (1999). For the synthesis of oxadiazole derivatives, see: Renaut et al. (1991).

Experimental top

Benzyl alcohol (BnOH, 11.8 ml, 114 mmol) was added under N2, drop-wise, at r.t., over 15 min to a solution of ethyl isothiocyanatoformate (13.54 g, 103 mmol) in EtOAc (200 ml). After refluxing for 5 h, the solvent was evaporated under reduced pressure. The crude yellow solid obtained was stirred with Et2O (25 ml) for 2 h and placed at -18 °C overnight. The precipitated product was isolated by suction and washed with hexane. Colourless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature.

Refinement top

Atom H11 of the NH group was located from a difference Fourier map and refined freely [refined distance; N—H = 0.83 (2) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier C) for aromatic and methylene, and 1.5Ueq(carrier C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing molecules linked by intermolecular N—H···S hydrogen bonds (dashed lines).
Ethyl N-[(benzyloxy)thiocarbonyl]carbamate top
Crystal data top
C11H13NO3SZ = 2
Mr = 239.28F(000) = 252
Triclinic, P1Dx = 1.268 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.608 (4) ÅCell parameters from 3416 reflections
b = 7.963 (7) Åθ = 2.6–27.5°
c = 12.369 (6) ŵ = 0.25 mm1
α = 87.451 (13)°T = 296 K
β = 80.725 (17)°Block, colourless
γ = 77.324 (18)°0.26 × 0.24 × 0.15 mm
V = 626.7 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.927, Tmax = 0.956k = 1010
13629 measured reflectionsl = 1616
2930 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
2930 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13NO3Sγ = 77.324 (18)°
Mr = 239.28V = 626.7 (7) Å3
Triclinic, P1Z = 2
a = 6.608 (4) ÅMo Kα radiation
b = 7.963 (7) ŵ = 0.25 mm1
c = 12.369 (6) ÅT = 296 K
α = 87.451 (13)°0.26 × 0.24 × 0.15 mm
β = 80.725 (17)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2143 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.956Rint = 0.054
13629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
2930 reflectionsΔρmin = 0.20 e Å3
149 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2095 (2)0.85565 (18)0.30806 (11)0.0469 (3)
C20.0200 (2)0.9802 (2)0.33462 (13)0.0618 (4)
H20.00731.03850.40070.074*
C30.1272 (2)1.0161 (2)0.26156 (15)0.0694 (5)
H30.25251.09620.28020.083*
C40.0860 (2)0.9320 (2)0.16136 (15)0.0686 (5)
H40.1840.95540.11350.082*
C50.1039 (2)0.8120 (2)0.13283 (14)0.0638 (4)
H50.13320.75820.06510.077*
C60.2500 (2)0.7728 (2)0.20631 (13)0.0546 (4)
H60.37410.69150.18750.065*
C70.3573 (2)0.8143 (2)0.39377 (12)0.0578 (4)
H7A0.38820.91930.41720.069*
H7B0.2920.75910.45730.069*
O80.55155 (14)0.69857 (13)0.34312 (7)0.0515 (3)
C90.6988 (2)0.63279 (18)0.40536 (11)0.0444 (3)
S100.68670 (6)0.67360 (6)0.53914 (3)0.05991 (16)
N110.87013 (18)0.52354 (16)0.34747 (9)0.0497 (3)
H110.976 (3)0.484 (2)0.3762 (15)0.070 (5)*
C120.9048 (2)0.47201 (19)0.23650 (11)0.0467 (3)
O130.77902 (16)0.49923 (16)0.17264 (8)0.0646 (3)
O141.10760 (14)0.38449 (13)0.21449 (7)0.0534 (3)
C151.1791 (2)0.3185 (2)0.10216 (12)0.0613 (4)
H15A1.16340.41250.04940.074*
H15B1.0970.23790.08650.074*
C161.4076 (3)0.2296 (3)0.09575 (16)0.0833 (6)
H16A1.45980.18370.02370.125*
H16B1.42090.13770.14880.125*
H16C1.48720.31090.11070.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (7)0.0508 (8)0.0428 (7)0.0034 (6)0.0082 (6)0.0039 (6)
C20.0559 (9)0.0692 (10)0.0497 (8)0.0089 (7)0.0075 (7)0.0005 (7)
C30.0467 (8)0.0775 (11)0.0721 (11)0.0127 (8)0.0126 (8)0.0073 (9)
C40.0535 (8)0.0833 (12)0.0692 (11)0.0047 (8)0.0263 (8)0.0083 (9)
C50.0608 (9)0.0748 (11)0.0571 (9)0.0073 (8)0.0218 (7)0.0050 (8)
C60.0459 (7)0.0597 (9)0.0561 (9)0.0007 (6)0.0152 (6)0.0059 (7)
C70.0519 (8)0.0648 (9)0.0479 (8)0.0117 (7)0.0128 (6)0.0089 (7)
O80.0445 (5)0.0661 (6)0.0383 (5)0.0052 (4)0.0127 (4)0.0044 (4)
C90.0422 (7)0.0515 (8)0.0388 (7)0.0043 (6)0.0118 (5)0.0008 (6)
S100.0581 (2)0.0760 (3)0.0394 (2)0.00832 (19)0.01693 (16)0.01291 (18)
N110.0424 (6)0.0670 (8)0.0363 (6)0.0024 (6)0.0146 (5)0.0053 (5)
C120.0438 (7)0.0568 (8)0.0384 (7)0.0040 (6)0.0112 (5)0.0031 (6)
O130.0510 (6)0.0927 (8)0.0468 (6)0.0035 (5)0.0210 (5)0.0135 (6)
O140.0451 (5)0.0698 (7)0.0399 (5)0.0050 (5)0.0115 (4)0.0113 (5)
C150.0581 (8)0.0785 (11)0.0414 (8)0.0012 (8)0.0092 (7)0.0127 (7)
C160.0579 (9)0.1058 (15)0.0729 (12)0.0090 (10)0.0010 (9)0.0257 (11)
Geometric parameters (Å, º) top
C1—C61.407 (2)O8—C91.3402 (16)
C1—C21.418 (2)C9—N111.3830 (18)
C1—C71.532 (2)C9—S101.6864 (16)
C2—C31.408 (2)N11—C121.4186 (18)
C2—H20.93N11—H110.83 (2)
C3—C41.394 (2)C12—O131.2160 (17)
C3—H30.93C12—O141.3586 (17)
C4—C51.405 (2)O14—C151.4745 (17)
C4—H40.93C15—C161.512 (2)
C5—C61.407 (2)C15—H15A0.97
C5—H50.93C15—H15B0.97
C6—H60.93C16—H16A0.96
C7—O81.4708 (17)C16—H16B0.96
C7—H7A0.97C16—H16C0.96
C7—H7B0.97
C6—C1—C2118.77 (13)C9—O8—C7118.80 (11)
C6—C1—C7123.26 (12)O8—C9—N11112.36 (12)
C2—C1—C7117.95 (13)O8—C9—S10125.94 (10)
C3—C2—C1120.36 (15)N11—C9—S10121.70 (10)
C3—C2—H2119.8C9—N11—C12129.29 (11)
C1—C2—H2119.8C9—N11—H11120.3 (13)
C4—C3—C2120.30 (14)C12—N11—H11110.2 (13)
C4—C3—H3119.9O13—C12—O14126.01 (13)
C2—C3—H3119.9O13—C12—N11127.36 (12)
C3—C4—C5119.82 (15)O14—C12—N11106.63 (11)
C3—C4—H4120.1C12—O14—C15116.03 (10)
C5—C4—H4120.1O14—C15—C16106.93 (13)
C4—C5—C6120.23 (16)O14—C15—H15A110.3
C4—C5—H5119.9C16—C15—H15A110.3
C6—C5—H5119.9O14—C15—H15B110.3
C1—C6—C5120.47 (13)C16—C15—H15B110.3
C1—C6—H6119.8H15A—C15—H15B108.6
C5—C6—H6119.8C15—C16—H16A109.5
O8—C7—C1107.80 (12)C15—C16—H16B109.5
O8—C7—H7A110.1H16A—C16—H16B109.5
C1—C7—H7A110.1C15—C16—H16C109.5
O8—C7—H7B110.1H16A—C16—H16C109.5
C1—C7—H7B110.1H16B—C16—H16C109.5
H7A—C7—H7B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···S10i0.83 (2)2.66 (2)3.481 (2)174.3 (17)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H13NO3S
Mr239.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.608 (4), 7.963 (7), 12.369 (6)
α, β, γ (°)87.451 (13), 80.725 (17), 77.324 (18)
V3)626.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.927, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
13629, 2930, 2143
Rint0.054
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.02
No. of reflections2930
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···S10i0.83 (2)2.66 (2)3.481 (2)174.3 (17)
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201–1206.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRa, D. Y., Cho, N. S., Kang, S. K., Choi, E. S. & Suh, I. H. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 81–83.  CrossRef Google Scholar
First citationRenaut, P., Thomas, D. & Bellamy, F. D. (1991). Synthesis, pp. 265–266.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds