organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o362-o363

1,3-Bis(bi­phenyl-4-yl)-2,2-di­bromo-3-oxo­propyl acetate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title compound, C29H22Br2O3, the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8) and 30.9 (8)°. The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped mol­ecule are oriented at angles of 66.1 (7) and 60.0 (8)°, respectively. The two Br atoms are opposite the propen-1-one group. Weak inter­molecular C—H⋯O and C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For chalcone derivatives exhibiting non-linear optical effects, see: Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Tam et al. (1989[Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). For the improvement of mol­ecular first-order hyperpolarizabilities, see: Zhao et al. (2002[Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513-1517.]). For related dibromo chalcone structures, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308-o4309.]); Narayana et al. (2007[Narayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.]); Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.]); Yathirajan et al. (2007[Yathirajan, H. S., Mayekar, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2345.]); For the synthesis of various chalcone derivatives, see: Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharm. Chem. 3, 232-240.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.]).

[Scheme 1]

Experimental

Crystal data
  • C29H22Br2O3

  • Mr = 578.29

  • Monoclinic, P 21 /c

  • a = 12.0497 (14) Å

  • b = 20.842 (2) Å

  • c = 9.9482 (10) Å

  • β = 98.743 (10)°

  • V = 2469.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.557, Tmax = 0.733

  • 22652 measured reflections

  • 5881 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.02

  • 5881 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C24–C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.98 2.41 3.336 (6) 158
C17—H17A⋯O3ii 0.95 2.47 3.369 (5) 158
C20—H20ACg4iii 0.95 2.82 3.707 (4) 157
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between molecules (Zhao et al., 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. In order to synthesize the dibromo derivative of this chalcone, (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one was brominated using bromine in acetic acid. But instead of the dibromo derivative of this chalcone, a new product 2,2-dibromo-1,3-di(biphenyl-4-yl)-3-oxopropyl acetate (I) has been obtained.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo-3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl) propan-1-one (Narayana et al., 2007), 2,3-dibromo-3-(4-bromo-6-methoxy -2-naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini et al., 2007), 2,3-dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl) propan-1-one (Yathirajan et al., 2007) and (2Z)-2-bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1- (2,4-dichlorophenyl)prop-2-en-1-one (Butcher et al., 2007) have been reported. In continuation of our work on synthesis of various derivatives of chalcone (Samshuddin et al., 2011; Jasinski et al., 2010), the title chalcone dibromide, (I), was prepared and its crystal structure is reported.

In the crystal structure of (I), the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8)° and 30.9 (8)° (Fig. 1). The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped molecule are oriented at angles of 66.1 (7) and 60.0 (8)°, respectively. The two bromine atoms are opposite the propen-1-one group extending in an apical configuration. Weak C—H···O and C—H···Cg π-ring intermolecular interactions are observed in the crystal structure (Table 1, Fig. 2).

Related literature top

For chalcone derivatives exhibiting non-linear optical effects, see: Indira et al. (2002); Tam et al. (1989); Uchida et al. (1998). For the improvement of molecular first-order hyperpolarizabilities, see: Zhao et al. (2002). For related dibromo chalcone structures, see: Butcher et al. (2007); Narayana et al. (2007); Sarojini et al. (2007); Yathirajan et al. (2007); For the synthesis of various chalcone derivatives, see: Samshuddin et al. (2011); Jasinski et al. (2010).

Experimental top

To a solution of (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one (3.60 g, 0.01 mol) in acetic acid (25 ml), bromine (1.60 g, 0.01 mol) in acetic acid (10 ml) was added slowly with stirring at 273 K. After completion of the addition of the bromine solution, the reaction mixture was stirred for 5 h. The solid obtained was filtered and recrystallized from acetone. Single crystals were grown from its methanol solution by slow evaporation. The yield of the compound was 86%. (m.p.: 445 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95–1.00 Å (CH) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) or 1.49 (CH3) × Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen atoms have been omitted for clarity.
1,3-Bis(biphenyl-4-yl)-2,2-dibromo-3-oxopropyl acetate top
Crystal data top
C29H22Br2O3F(000) = 1160
Mr = 578.29Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2960 reflections
a = 12.0497 (14) Åθ = 3.0–30.0°
b = 20.842 (2) ŵ = 3.31 mm1
c = 9.9482 (10) ÅT = 173 K
β = 98.743 (10)°Block, colourless
V = 2469.4 (5) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5881 independent reflections
Radiation source: Enhance (Mo) X-ray Source3640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2726
Tmin = 0.557, Tmax = 0.733l = 1312
22652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4853P]
where P = (Fo2 + 2Fc2)/3
5881 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C29H22Br2O3V = 2469.4 (5) Å3
Mr = 578.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0497 (14) ŵ = 3.31 mm1
b = 20.842 (2) ÅT = 173 K
c = 9.9482 (10) Å0.20 × 0.20 × 0.10 mm
β = 98.743 (10)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5881 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3640 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.733Rint = 0.068
22652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.72 e Å3
5881 reflectionsΔρmin = 0.59 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44982 (4)0.34440 (2)0.13153 (5)0.05921 (17)
Br20.42924 (4)0.46937 (2)0.31413 (5)0.05352 (15)
O10.1796 (3)0.28133 (16)0.4651 (3)0.0722 (10)
O20.3020 (2)0.28697 (12)0.3156 (3)0.0488 (7)
O30.1617 (2)0.39172 (18)0.2153 (3)0.0758 (10)
C10.1816 (5)0.1984 (2)0.2981 (5)0.0736 (15)
H1A0.11790.18000.33540.110*
H1B0.24420.16790.31000.110*
H1C0.15920.20730.20100.110*
C20.2174 (4)0.2594 (2)0.3710 (5)0.0539 (11)
C30.3430 (3)0.34764 (17)0.3725 (4)0.0406 (9)
H3A0.28130.36750.41510.049*
C40.3582 (3)0.38888 (19)0.2475 (4)0.0423 (9)
C50.2436 (3)0.4071 (2)0.1659 (4)0.0484 (10)
C60.2285 (3)0.44157 (18)0.0336 (4)0.0418 (9)
C70.3135 (3)0.46850 (19)0.0303 (4)0.0480 (10)
H7A0.38940.46560.01250.058*
C80.2891 (3)0.4989 (2)0.1532 (4)0.0496 (10)
H8A0.34840.51680.19390.060*
C90.1792 (3)0.50414 (19)0.2200 (4)0.0432 (9)
C100.0950 (3)0.47780 (18)0.1548 (4)0.0454 (10)
H10A0.01890.48090.19690.054*
C110.1194 (3)0.44754 (19)0.0316 (4)0.0452 (10)
H11A0.05990.43030.00990.054*
C120.1512 (3)0.53706 (17)0.3519 (4)0.0435 (9)
C130.2239 (4)0.5370 (2)0.4479 (5)0.0557 (12)
H13A0.29320.51470.42870.067*
C140.1977 (4)0.5685 (2)0.5701 (5)0.0600 (12)
H14A0.24950.56800.63320.072*
C150.0983 (4)0.6004 (2)0.6020 (5)0.0567 (11)
H15A0.08100.62240.68620.068*
C160.0235 (4)0.6000 (2)0.5100 (5)0.0571 (12)
H16A0.04670.62130.53180.069*
C170.0496 (4)0.5689 (2)0.3860 (5)0.0525 (11)
H17A0.00270.56940.32360.063*
C180.4403 (3)0.33835 (17)0.4820 (4)0.0380 (9)
C190.5332 (3)0.30086 (19)0.4645 (4)0.0485 (10)
H19A0.53550.28050.37950.058*
C200.6214 (3)0.29298 (19)0.5683 (4)0.0470 (10)
H20A0.68440.26830.55260.056*
C210.6208 (3)0.32024 (17)0.6958 (4)0.0392 (9)
C220.5258 (3)0.35519 (19)0.7145 (4)0.0463 (10)
H22A0.52080.37290.80140.056*
C230.4388 (3)0.36451 (19)0.6088 (4)0.0453 (10)
H23A0.37620.38970.62400.054*
C240.7180 (3)0.31323 (18)0.8042 (4)0.0417 (9)
C250.7914 (4)0.2617 (2)0.8065 (5)0.0554 (11)
H25A0.77590.22870.74050.066*
C260.8855 (4)0.2576 (2)0.9022 (5)0.0634 (13)
H26A0.93480.22220.90070.076*
C270.9099 (4)0.3037 (3)0.9998 (5)0.0687 (14)
H27A0.97570.30071.06560.082*
C280.8380 (4)0.3540 (2)1.0011 (5)0.0645 (13)
H28A0.85290.38571.07010.077*
C290.7442 (4)0.3597 (2)0.9043 (5)0.0527 (11)
H29A0.69650.39590.90570.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0624 (3)0.0713 (3)0.0495 (3)0.0171 (2)0.0263 (2)0.0032 (2)
Br20.0479 (3)0.0544 (3)0.0586 (3)0.0059 (2)0.0094 (2)0.0019 (2)
O10.073 (2)0.095 (2)0.054 (2)0.0222 (19)0.0280 (18)0.0089 (18)
O20.0503 (17)0.0525 (16)0.0455 (17)0.0068 (13)0.0136 (14)0.0048 (13)
O30.0397 (17)0.131 (3)0.060 (2)0.0013 (18)0.0162 (16)0.032 (2)
C10.091 (4)0.069 (3)0.060 (3)0.025 (3)0.011 (3)0.001 (3)
C20.055 (3)0.067 (3)0.039 (3)0.008 (2)0.007 (2)0.007 (2)
C30.038 (2)0.045 (2)0.040 (2)0.0017 (18)0.0107 (18)0.0078 (18)
C40.036 (2)0.056 (2)0.036 (2)0.0000 (18)0.0115 (17)0.0035 (18)
C50.039 (2)0.065 (3)0.043 (3)0.001 (2)0.0129 (19)0.001 (2)
C60.038 (2)0.047 (2)0.042 (2)0.0016 (18)0.0113 (18)0.0012 (18)
C70.032 (2)0.061 (3)0.051 (3)0.0008 (19)0.0057 (19)0.006 (2)
C80.040 (2)0.056 (3)0.054 (3)0.0046 (19)0.012 (2)0.006 (2)
C90.043 (2)0.046 (2)0.042 (2)0.0016 (18)0.0082 (18)0.0010 (18)
C100.035 (2)0.054 (2)0.047 (3)0.0046 (18)0.0057 (19)0.0062 (19)
C110.038 (2)0.051 (2)0.048 (3)0.0071 (18)0.0116 (19)0.0028 (19)
C120.044 (2)0.041 (2)0.047 (3)0.0001 (18)0.0087 (19)0.0019 (18)
C130.051 (3)0.062 (3)0.057 (3)0.012 (2)0.018 (2)0.015 (2)
C140.063 (3)0.064 (3)0.058 (3)0.000 (2)0.022 (2)0.014 (2)
C150.062 (3)0.052 (3)0.053 (3)0.004 (2)0.001 (2)0.011 (2)
C160.051 (3)0.053 (3)0.064 (3)0.008 (2)0.000 (2)0.006 (2)
C170.046 (3)0.055 (3)0.057 (3)0.002 (2)0.009 (2)0.003 (2)
C180.036 (2)0.045 (2)0.033 (2)0.0052 (17)0.0063 (17)0.0016 (16)
C190.055 (3)0.055 (2)0.037 (2)0.006 (2)0.010 (2)0.0086 (19)
C200.043 (2)0.052 (2)0.047 (3)0.0102 (19)0.011 (2)0.0024 (19)
C210.044 (2)0.038 (2)0.037 (2)0.0034 (17)0.0111 (18)0.0016 (16)
C220.055 (3)0.051 (2)0.035 (2)0.001 (2)0.014 (2)0.0062 (18)
C230.043 (2)0.051 (2)0.044 (3)0.0053 (18)0.014 (2)0.0031 (19)
C240.045 (2)0.041 (2)0.039 (2)0.0053 (18)0.0082 (18)0.0066 (17)
C250.066 (3)0.050 (2)0.050 (3)0.004 (2)0.007 (2)0.001 (2)
C260.056 (3)0.070 (3)0.063 (3)0.012 (2)0.004 (3)0.017 (3)
C270.064 (3)0.080 (4)0.058 (3)0.006 (3)0.004 (3)0.016 (3)
C280.071 (3)0.064 (3)0.054 (3)0.013 (3)0.005 (3)0.005 (2)
C290.056 (3)0.052 (2)0.049 (3)0.003 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Br1—C41.949 (3)C14—C151.364 (6)
Br2—C41.953 (4)C14—H14A0.9500
O1—C21.192 (5)C15—C161.379 (6)
O2—C21.359 (5)C15—H15A0.9500
O2—C31.441 (4)C16—C171.386 (6)
O3—C51.211 (4)C16—H16A0.9500
C1—C21.493 (6)C17—H17A0.9500
C1—H1A0.9800C18—C231.377 (5)
C1—H1B0.9800C18—C191.398 (5)
C1—H1C0.9800C19—C201.374 (6)
C3—C181.487 (5)C19—H19A0.9500
C3—C41.545 (5)C20—C211.391 (5)
C3—H3A1.0000C20—H20A0.9500
C4—C51.539 (6)C21—C221.393 (5)
C5—C61.486 (6)C21—C241.473 (6)
C6—C111.381 (5)C22—C231.381 (6)
C6—C71.402 (5)C22—H22A0.9500
C7—C81.369 (6)C23—H23A0.9500
C7—H7A0.9500C24—C251.389 (6)
C8—C91.392 (6)C24—C291.391 (6)
C8—H8A0.9500C25—C261.368 (6)
C9—C101.398 (5)C25—H25A0.9500
C9—C121.474 (6)C26—C271.365 (7)
C10—C111.370 (6)C26—H26A0.9500
C10—H10A0.9500C27—C281.362 (7)
C11—H11A0.9500C27—H27A0.9500
C12—C171.389 (6)C28—C291.374 (6)
C12—C131.390 (5)C28—H28A0.9500
C13—C141.375 (6)C29—H29A0.9500
C13—H13A0.9500
C2—O2—C3116.5 (3)C15—C14—C13120.9 (4)
C2—C1—H1A109.5C15—C14—H14A119.5
C2—C1—H1B109.5C13—C14—H14A119.5
H1A—C1—H1B109.5C14—C15—C16118.8 (4)
C2—C1—H1C109.5C14—C15—H15A120.6
H1A—C1—H1C109.5C16—C15—H15A120.6
H1B—C1—H1C109.5C15—C16—C17120.7 (4)
O1—C2—O2123.7 (4)C15—C16—H16A119.7
O1—C2—C1126.3 (4)C17—C16—H16A119.7
O2—C2—C1110.0 (4)C16—C17—C12120.9 (4)
O2—C3—C18111.0 (3)C16—C17—H17A119.6
O2—C3—C4104.4 (3)C12—C17—H17A119.6
C18—C3—C4119.0 (3)C23—C18—C19117.2 (4)
O2—C3—H3A107.3C23—C18—C3120.1 (3)
C18—C3—H3A107.3C19—C18—C3122.6 (3)
C4—C3—H3A107.3C20—C19—C18121.0 (4)
C5—C4—C3110.8 (3)C20—C19—H19A119.5
C5—C4—Br1110.4 (3)C18—C19—H19A119.5
C3—C4—Br1111.0 (3)C19—C20—C21121.7 (4)
C5—C4—Br2106.2 (3)C19—C20—H20A119.1
C3—C4—Br2107.7 (3)C21—C20—H20A119.1
Br1—C4—Br2110.53 (17)C20—C21—C22117.0 (4)
O3—C5—C6119.3 (4)C20—C21—C24120.9 (3)
O3—C5—C4116.2 (4)C22—C21—C24122.1 (4)
C6—C5—C4124.5 (3)C23—C22—C21121.1 (4)
C11—C6—C7117.4 (4)C23—C22—H22A119.5
C11—C6—C5116.0 (3)C21—C22—H22A119.5
C7—C6—C5126.6 (4)C18—C23—C22121.9 (4)
C8—C7—C6121.2 (4)C18—C23—H23A119.1
C8—C7—H7A119.4C22—C23—H23A119.1
C6—C7—H7A119.4C25—C24—C29116.9 (4)
C7—C8—C9121.5 (4)C25—C24—C21121.4 (4)
C7—C8—H8A119.3C29—C24—C21121.6 (4)
C9—C8—H8A119.3C26—C25—C24121.2 (4)
C8—C9—C10116.9 (4)C26—C25—H25A119.4
C8—C9—C12122.3 (3)C24—C25—H25A119.4
C10—C9—C12120.8 (4)C27—C26—C25121.2 (5)
C11—C10—C9121.6 (4)C27—C26—H26A119.4
C11—C10—H10A119.2C25—C26—H26A119.4
C9—C10—H10A119.2C28—C27—C26118.7 (5)
C10—C11—C6121.4 (4)C28—C27—H27A120.7
C10—C11—H11A119.3C26—C27—H27A120.7
C6—C11—H11A119.3C27—C28—C29121.1 (5)
C17—C12—C13117.1 (4)C27—C28—H28A119.5
C17—C12—C9120.9 (4)C29—C28—H28A119.5
C13—C12—C9121.9 (4)C28—C29—C24121.0 (4)
C14—C13—C12121.5 (4)C28—C29—H29A119.5
C14—C13—H13A119.2C24—C29—H29A119.5
C12—C13—H13A119.2
C3—O2—C2—O12.8 (6)C17—C12—C13—C141.6 (7)
C3—O2—C2—C1177.9 (4)C9—C12—C13—C14179.2 (4)
C2—O2—C3—C1893.1 (4)C12—C13—C14—C150.8 (7)
C2—O2—C3—C4137.5 (3)C13—C14—C15—C160.7 (7)
O2—C3—C4—C570.3 (4)C14—C15—C16—C171.3 (7)
C18—C3—C4—C5165.3 (3)C15—C16—C17—C120.4 (7)
O2—C3—C4—Br152.7 (3)C13—C12—C17—C161.0 (6)
C18—C3—C4—Br171.7 (4)C9—C12—C17—C16179.8 (4)
O2—C3—C4—Br2173.9 (2)O2—C3—C18—C23126.1 (4)
C18—C3—C4—Br249.5 (4)C4—C3—C18—C23112.8 (4)
C3—C4—C5—O35.7 (5)O2—C3—C18—C1950.6 (5)
Br1—C4—C5—O3129.2 (4)C4—C3—C18—C1970.5 (5)
Br2—C4—C5—O3111.0 (4)C23—C18—C19—C202.8 (6)
C3—C4—C5—C6174.3 (3)C3—C18—C19—C20179.5 (4)
Br1—C4—C5—C650.9 (5)C18—C19—C20—C211.9 (6)
Br2—C4—C5—C669.0 (4)C19—C20—C21—C221.0 (6)
O3—C5—C6—C116.8 (6)C19—C20—C21—C24177.7 (4)
C4—C5—C6—C11173.2 (4)C20—C21—C22—C232.8 (6)
O3—C5—C6—C7172.9 (4)C24—C21—C22—C23175.8 (4)
C4—C5—C6—C77.1 (6)C19—C18—C23—C220.9 (6)
C11—C6—C7—C80.7 (6)C3—C18—C23—C22177.8 (4)
C5—C6—C7—C8179.6 (4)C21—C22—C23—C181.9 (6)
C6—C7—C8—C90.3 (6)C20—C21—C24—C2525.7 (5)
C7—C8—C9—C101.0 (6)C22—C21—C24—C25155.7 (4)
C7—C8—C9—C12179.6 (4)C20—C21—C24—C29150.5 (4)
C8—C9—C10—C110.7 (6)C22—C21—C24—C2928.1 (5)
C12—C9—C10—C11179.4 (4)C29—C24—C25—C260.8 (6)
C9—C10—C11—C60.2 (6)C21—C24—C25—C26175.6 (4)
C7—C6—C11—C100.9 (6)C24—C25—C26—C270.9 (7)
C5—C6—C11—C10179.4 (4)C25—C26—C27—C280.4 (7)
C8—C9—C12—C17148.5 (4)C26—C27—C28—C291.8 (7)
C10—C9—C12—C1730.1 (6)C27—C28—C29—C241.9 (7)
C8—C9—C12—C1332.3 (6)C25—C24—C29—C280.6 (6)
C10—C9—C12—C13149.1 (4)C21—C24—C29—C28177.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C24–C29 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.982.413.336 (6)158
C17—H17A···O3ii0.952.473.369 (5)158
C20—H20A···Cg4iii0.952.823.707 (4)157
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC29H22Br2O3
Mr578.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0497 (14), 20.842 (2), 9.9482 (10)
β (°) 98.743 (10)
V3)2469.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.557, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
22652, 5881, 3640
Rint0.068
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.02
No. of reflections5881
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.59

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C24–C29 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.982.413.336 (6)158
C17—H17A···O3ii0.952.473.369 (5)158
C20—H20A···Cg4iii0.952.823.707 (4)157
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1/2, z3/2.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308–o4309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharm. Chem. 3, 232–240.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationYathirajan, H. S., Mayekar, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513–1517.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o362-o363
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds