metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m211-m212

Poly[[di­aqua­tetra­kis­(μ2-benzene-1,4-di­carbo­nitrile-κ2N:N′)iron(II)] bis­­[tetra­chlorido­ferrate(III)] nitro­methane tetra­solvate]

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang Phitsanulok 65000, Thailand
*Correspondence e-mail: kittipongc@nu.ac.th

(Received 18 January 2012; accepted 19 January 2012; online 31 January 2012)

In the title compound, {[FeII(C8H4N2)2(H2O)2][FeIIICl4]2·4CH3NO2}n, the FeII and FeIII ions are hexa- and tetra­coordinated, respectively. Each unique benzene-1,4-dicarbonitrile mol­ecule lies across a crystallographic inversion centre and bridges two FeII ions (each situated on an inversion centre), generating two-dimensional (4,4) square grid layers. The tetra­chloridoferrate(III) anions and nitro­methane solvent mol­ecules lie between the square grid layers and are further link to the adjacent layers into a three-dimensional supra­molecular structure through O—H⋯Cl and O—H⋯O hydrogen bonds.

Related literature

For background to FeII spin-crossover complexes, see: Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Neville et al. (2007[Neville, S. M., Leita, B. A., Offermann, D. A., Duriska, M. B., Moubaraki, B., Chapman, K. W., Halder, J. D. & Murray, K. S. (2007). Eur. J. Inorg. Chem. pp. 1073-1085.], 2008[Neville, S. M., Leita, B. A., Halder, G. J., Kepert, C. J., Moubaraki, B., Létard, J.-F. & Murray, K. S. (2008). Chem. Eur. J. 14, 10123-10133.]); Murray (2008[Murray, K. S. (2008). Eur. J. Inorg. Chem. pp. 3101-3121.]). For the use of two connecting organodinitrile ligands for the development of magnetism, see: Chainok et al. (2010[Chainok, K., Neville, S. M., Moubaraki, B., Batten, S. R., Murray, K. S., Forsyth, C. M., Cashion, J. D. & Haller, K. J. (2010). Dalton Trans. 39, 10900-10909.], 2012[Chainok, K., Harding, D. J., Moubaraki, B., Batten, S. R. & Murray, S. R. (2012). Unpublished results.]). For the synthesis, see: Chainok et al. (2012[Chainok, K., Harding, D. J., Moubaraki, B., Batten, S. R. & Murray, S. R. (2012). Unpublished results.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C8H4N2)2(H2O)2][FeCl4]2·4CH3NO2

  • Mr = 987.62

  • Monoclinic, P 21 /n

  • a = 12.1307 (9) Å

  • b = 12.1554 (9) Å

  • c = 13.8209 (10) Å

  • β = 102.466 (1)°

  • V = 1989.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 100 K

  • 0.27 × 0.27 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.661, Tmax = 0.690

  • 11573 measured reflections

  • 4397 independent reflections

  • 3541 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.03

  • 4397 reflections

  • 233 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O1 2.0884 (15)
Fe1—N21 2.1309 (17)
Fe1—N11 2.1649 (17)
Cl1—Fe2 2.2070 (6)
Fe2—Cl2 2.1811 (6)
Fe2—Cl3 2.1968 (6)
Fe2—Cl4 2.1996 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.87 (2) 1.99 (2) 2.804 (2) 155 (3)
O1—H1⋯O4 0.87 (2) 2.57 (3) 3.074 (3) 118 (2)
O1—H2⋯Cl1 0.84 (2) 2.43 (2) 3.2731 (16) 177 (3)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The d6 Fe(II) complexes exhibiting spin-crossover (SCO) transitions between a 1A1 low spin (S = 0) and a 5T2 high spin (S = 2) states are of interest due to their possible applications as molecular switches or materials for information storage (Kahn & Martinez 1998). Although the fundamental origin of the SCO phenomenon is molecular, SCO transitions in the crystal structure can be reversibly switched by external stimuli such as light, temperature and pressure as well as the existence of long or short range supramolecular interactions (Neville et al. 2007, 2008; Murray 2008). The title compound was obtained as a minor product in another an earlier from part of further study of how the nature of the two-connecting organodinitrile bridging ligands affect the SCO phenomenon in the Fe(II) complexes (Chainok et al. 2010).

A fragment containing the asymmetric unit with atom numbering and coordination environments of the metal centre of the title compound is shown in Fig. 1. The asymmetric unit contains one iron(II) cation (half-occupancy), one coordinated water molecule, half of two independent benzene-1,4-dicarbonitrile ligand, one tetrachloridoferrate(III) anion, and two nitromethane solvent molecules. The FeII ion resides in an inversion center and is octahedrally coordinated by four nitrogen atoms from benzene-1,4-dicarbonitrile ligands in the equatorial plane and two equivalent terminal water molecules occupying the axial positions. The Fe—N and Fe—O bond lengths in the title compound, Table 1, are comparable to that observed for a high spin species in the corresponding Fe(II) complex containing the two-connecting organodinitrile ligands such as [FeII(AIBN)(H2O)][FeIIICl4]2 (Fe—N = 2.144 (1)–2.171 (1) Å and Fe–O = 2.084 (1) Å), AIBN = 2,2'-azobisisobutyronitrile (Chainok et al. 2010). Each benzene-1,4-dicarbonitrile ligand has crystallographically imposed inversion symmetry and is bound to two neighboring FeII ions generating two-dimensional approximate square grid layers with (4,4) topology perpendicular to the c axis, with the dimension of 12.1307 (9) × 12.1554 (9) Å (FeII···FeII distances across the benzene-1,4-dicarbonitrile ligand), Fig. 2. The layers are packed to each other with an interlayer separation of 6.0777 (5) Å.

The FeIII atom is a tetrahedrally coordinated to four chloride anions. The bond lengths and angles around the Fe(III) ions are within the common ranges for this type of coordination environment (Chainok et al. 2010). The tetrachloridoferrate(III) anions and the nitromethane solvent molecules all lie in general position in the structure, and are included in the layers by eschewing the interpenetration of the networks. These guest molecules are then further linked to the adjacent two-dimensional layers into a three-dimensional supramolecular structure through O—H···Cl and O—H···O hydrogen bonds formed between the apically water molecules coordinated to the metal ions and Cl and O atoms of the guest molecules, Table 2.

Related literature top

For background to FeII spin-crossover complexes, see: Kahn & Martinez (1998); Neville et al. (2007, 2008); Murray (2008). For the use of two connecting organodinitrile ligands for the development of magnetism, see: Chainok et al. (2010, 2012). For the synthesis, see: Chainok et al. (2012).

Experimental top

Single crystals of the title compound were obtained as the minor product during the synthesis of [FeII(C8H4N2)2][FeIIICl4]2 (Chainok et al. 2012) when traces of air and moisture are presented. Typically, FeCl2 (62 mg, 0.5 mmol) and FeCl3 (163 mg, 1 mmol) were dissolved in 3 ml of CH3NO2 to formed a yellow brown solution and this was pipetted into one side of the H-tube. Benzene-1,4-dicarbonitrile (192 mg, 1.5 mmol) was dissolved in 3 ml of CH3NO2 to give a colorless solution and this was pipetted into the other side arm of the H-tube. The H-tube was then carefully filled with CH3NO2. Upon slow diffusion for two weeks, yellow block-shaped of the major product (ca. 60% yield based on FeCl2) and pale yellow plate of the minor product (ca. 5% yield based on FeCl2) single crystals were formed in the iron-containing side of the H-tube.

Refinement top

The hydrogen atoms were placed in the geometrically idealized positions and constrained to ride on their parent atom positions with a C–H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The hydrogen atoms attached to oxygen atoms of the water molecules were located in a difference Fourier map and refined being in their as-found positions with a DFIX restraint of O—H distance at 0.90 Å, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of a fragment at the 50% probability level containing the asymmetric unit with atom numbering and coordination environments of the metal centers of the title compound.
[Figure 2] Fig. 2. Inclusion of tetrachloridoferrate(III) anions and nitromethane molecules in the square grid networks of the title compound.
Poly[[diaquatetrakis(µ2-benzene-1,4-dicarbonitrile- κ2N:N')iron(II)] bis[tetrachloroferrate(III)] nitromethane tetrasolvate] top
Crystal data top
[Fe(C8H4N2)2(H2O)2][FeCl4]2·4CH3NO2F(000) = 988
Mr = 987.62Dx = 1.648 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3583 reflections
a = 12.1307 (9) Åθ = 2.4–27.4°
b = 12.1554 (9) ŵ = 1.67 mm1
c = 13.8209 (10) ÅT = 100 K
β = 102.466 (1)°Block, yellow
V = 1989.9 (3) Å30.27 × 0.27 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4397 independent reflections
Radiation source: fine-focus sealed tube3541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8 pixels mm-1θmax = 28.1°, θmin = 2.0°
ω and ϕ scansh = 1516
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1215
Tmin = 0.661, Tmax = 0.690l = 1717
11573 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
4397 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.76 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe(C8H4N2)2(H2O)2][FeCl4]2·4CH3NO2V = 1989.9 (3) Å3
Mr = 987.62Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.1307 (9) ŵ = 1.67 mm1
b = 12.1554 (9) ÅT = 100 K
c = 13.8209 (10) Å0.27 × 0.27 × 0.24 mm
β = 102.466 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3541 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.690Rint = 0.030
11573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.76 e Å3
4397 reflectionsΔρmin = 0.50 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01056 (10)
Cl10.31456 (5)0.45491 (4)0.76369 (4)0.02217 (13)
O10.52584 (13)0.46637 (12)0.65141 (11)0.0173 (3)
N10.74782 (15)0.26095 (15)0.71549 (13)0.0200 (4)
C10.7964 (2)0.15057 (19)0.74355 (17)0.0270 (5)
H1A0.78280.13010.80860.040*
H1B0.87780.15220.74650.040*
H1C0.76060.09650.69410.040*
H10.576 (2)0.417 (2)0.676 (2)0.052 (9)*
Fe20.29049 (3)0.29511 (2)0.83208 (2)0.01702 (9)
Cl20.42489 (5)0.18565 (5)0.80885 (4)0.02811 (14)
O20.64553 (13)0.26786 (12)0.68614 (12)0.0259 (4)
N20.67018 (18)0.34984 (17)0.93557 (15)0.0297 (5)
C20.6206 (3)0.3774 (2)1.0194 (2)0.0437 (7)
H2A0.67210.35501.08100.066*
H2B0.54850.33881.01310.066*
H2C0.60800.45701.02050.066*
H20.4716 (18)0.466 (2)0.6803 (19)0.043 (9)*
Cl30.12062 (5)0.23479 (4)0.76444 (4)0.02225 (13)
O30.81115 (14)0.33973 (14)0.72375 (13)0.0318 (4)
Cl40.30172 (5)0.31921 (5)0.99164 (4)0.02609 (14)
O40.6489 (2)0.41206 (17)0.86466 (15)0.0661 (7)
O50.72545 (17)0.26586 (17)0.93885 (17)0.0515 (6)
N110.49078 (14)0.32436 (14)0.47352 (13)0.0159 (4)
C110.49325 (17)0.23044 (17)0.47862 (15)0.0151 (4)
C120.49595 (17)0.11201 (16)0.48873 (15)0.0164 (4)
C130.48332 (19)0.06644 (17)0.57797 (16)0.0203 (5)
H130.47240.11250.63060.024*
C140.51318 (19)0.04656 (17)0.41060 (16)0.0200 (5)
H140.52240.07910.35030.024*
N210.32197 (14)0.50641 (13)0.48775 (13)0.0166 (4)
C210.22841 (17)0.50554 (16)0.48975 (15)0.0148 (4)
C220.11031 (17)0.50257 (16)0.49328 (15)0.0146 (4)
C230.07732 (17)0.42932 (16)0.55939 (15)0.0160 (4)
H230.13100.38210.59940.019*
C240.03464 (17)0.57343 (17)0.43427 (15)0.0164 (4)
H240.05950.62300.39030.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0092 (2)0.00766 (19)0.0156 (2)0.00009 (14)0.00442 (15)0.00041 (15)
Cl10.0274 (3)0.0176 (3)0.0228 (3)0.0022 (2)0.0083 (2)0.0030 (2)
O10.0169 (8)0.0178 (8)0.0186 (8)0.0021 (6)0.0067 (6)0.0021 (6)
N10.0243 (11)0.0234 (10)0.0130 (9)0.0027 (8)0.0053 (8)0.0015 (7)
C10.0316 (14)0.0252 (13)0.0236 (12)0.0121 (10)0.0046 (10)0.0056 (10)
Fe20.02082 (17)0.01520 (16)0.01655 (17)0.00175 (12)0.00737 (13)0.00109 (12)
Cl20.0319 (3)0.0281 (3)0.0275 (3)0.0120 (2)0.0134 (3)0.0028 (2)
O20.0192 (8)0.0229 (8)0.0328 (9)0.0043 (6)0.0009 (7)0.0019 (7)
N20.0383 (13)0.0251 (11)0.0270 (11)0.0068 (9)0.0104 (9)0.0065 (9)
C20.072 (2)0.0264 (14)0.0435 (17)0.0025 (13)0.0369 (16)0.0013 (12)
Cl30.0246 (3)0.0183 (3)0.0254 (3)0.0026 (2)0.0088 (2)0.0022 (2)
O30.0274 (10)0.0317 (10)0.0394 (10)0.0080 (7)0.0139 (8)0.0008 (8)
Cl40.0343 (3)0.0283 (3)0.0175 (3)0.0041 (2)0.0098 (2)0.0008 (2)
O40.132 (2)0.0412 (13)0.0303 (11)0.0064 (13)0.0280 (13)0.0054 (10)
O50.0399 (12)0.0445 (12)0.0723 (15)0.0128 (9)0.0172 (11)0.0088 (11)
N110.0160 (9)0.0117 (9)0.0203 (9)0.0003 (6)0.0046 (7)0.0003 (7)
C110.0140 (10)0.0146 (11)0.0176 (10)0.0011 (8)0.0055 (8)0.0002 (8)
C120.0167 (10)0.0095 (9)0.0228 (11)0.0021 (8)0.0041 (9)0.0010 (8)
C130.0283 (12)0.0125 (10)0.0219 (11)0.0007 (8)0.0097 (9)0.0039 (9)
C140.0285 (12)0.0131 (10)0.0197 (11)0.0022 (9)0.0081 (9)0.0017 (9)
N210.0145 (9)0.0137 (9)0.0223 (9)0.0001 (7)0.0058 (7)0.0005 (7)
C210.0165 (11)0.0118 (10)0.0169 (10)0.0000 (8)0.0053 (8)0.0001 (8)
C220.0109 (9)0.0154 (10)0.0186 (10)0.0018 (7)0.0054 (8)0.0041 (8)
C230.0147 (10)0.0149 (10)0.0178 (10)0.0018 (8)0.0018 (8)0.0010 (8)
C240.0157 (10)0.0151 (10)0.0198 (11)0.0022 (8)0.0071 (9)0.0003 (8)
Geometric parameters (Å, º) top
Fe1—O12.0884 (15)N2—C21.455 (3)
Fe1—O1i2.0884 (15)C2—H2A0.9800
Fe1—N21i2.1309 (17)C2—H2B0.9800
Fe1—N212.1309 (17)C2—H2C0.9800
Fe1—N112.1649 (17)N11—C111.144 (3)
Fe1—N11i2.1649 (17)C11—C121.446 (3)
Cl1—Fe22.2070 (6)C12—C131.390 (3)
O1—H10.872 (17)C12—C141.393 (3)
O1—H20.840 (16)C13—C14ii1.382 (3)
N1—O31.218 (2)C13—H130.9500
N1—O21.222 (2)C14—C13ii1.382 (3)
N1—C11.483 (3)C14—H140.9500
C1—H1A0.9800N21—C211.141 (3)
C1—H1B0.9800C21—C221.444 (3)
C1—H1C0.9800C22—C241.388 (3)
Fe2—Cl22.1811 (6)C22—C231.395 (3)
Fe2—Cl32.1968 (6)C23—C24iii1.380 (3)
Fe2—Cl42.1996 (6)C23—H230.9500
N2—O51.217 (3)C24—C23iii1.380 (3)
N2—O41.221 (3)C24—H240.9500
O1—Fe1—O1i180.0Cl4—Fe2—Cl1109.08 (2)
O1—Fe1—N21i89.02 (6)O5—N2—O4124.7 (2)
O1i—Fe1—N21i90.98 (6)O5—N2—C2118.9 (2)
O1—Fe1—N2190.98 (6)O4—N2—C2116.4 (2)
O1i—Fe1—N2189.02 (6)N2—C2—H2A109.5
N21i—Fe1—N21180.00 (9)N2—C2—H2B109.5
O1—Fe1—N1188.13 (6)H2A—C2—H2B109.5
O1i—Fe1—N1191.87 (6)N2—C2—H2C109.5
N21i—Fe1—N1189.53 (6)H2A—C2—H2C109.5
N21—Fe1—N1190.47 (6)H2B—C2—H2C109.5
O1—Fe1—N11i91.87 (6)C11—N11—Fe1166.95 (17)
O1i—Fe1—N11i88.13 (6)N11—C11—C12177.9 (2)
N21i—Fe1—N11i90.47 (6)C13—C12—C14121.59 (19)
N21—Fe1—N11i89.53 (6)C13—C12—C11118.55 (19)
N11—Fe1—N11i180.0C14—C12—C11119.85 (19)
Fe1—O1—H1118.0 (19)C14ii—C13—C12119.4 (2)
Fe1—O1—H2120.9 (19)C14ii—C13—H13120.3
H1—O1—H2111 (2)C12—C13—H13120.3
O3—N1—O2123.50 (19)C13ii—C14—C12119.0 (2)
O3—N1—C1118.69 (19)C13ii—C14—H14120.5
O2—N1—C1117.81 (18)C12—C14—H14120.5
N1—C1—H1A109.5C21—N21—Fe1173.63 (17)
N1—C1—H1B109.5N21—C21—C22179.0 (2)
H1A—C1—H1B109.5C24—C22—C23122.29 (19)
N1—C1—H1C109.5C24—C22—C21119.98 (19)
H1A—C1—H1C109.5C23—C22—C21117.71 (18)
H1B—C1—H1C109.5C24iii—C23—C22118.85 (19)
Cl2—Fe2—Cl3113.33 (3)C24iii—C23—H23120.6
Cl2—Fe2—Cl4110.02 (2)C22—C23—H23120.6
Cl3—Fe2—Cl4108.69 (2)C23iii—C24—C22118.86 (19)
Cl2—Fe2—Cl1107.56 (2)C23iii—C24—H24120.6
Cl3—Fe2—Cl1108.07 (2)C22—C24—H24120.6
O1—Fe1—N11—C1110.8 (7)O1—Fe1—N21—C2113.1 (15)
O1i—Fe1—N11—C11169.2 (7)O1i—Fe1—N21—C21166.9 (15)
N21i—Fe1—N11—C1178.2 (7)N21i—Fe1—N21—C21141 (2)
N21—Fe1—N11—C11101.8 (7)N11—Fe1—N21—C2175.1 (15)
N11i—Fe1—N11—C1143 (18)N11i—Fe1—N21—C21104.9 (15)
Fe1—N11—C11—C1225 (7)Fe1—N21—C21—C2235 (15)
N11—C11—C12—C132 (6)N21—C21—C22—C24168 (13)
N11—C11—C12—C14177 (100)N21—C21—C22—C2314 (14)
C14—C12—C13—C14ii0.6 (4)C24—C22—C23—C24iii0.6 (3)
C11—C12—C13—C14ii179.35 (19)C21—C22—C23—C24iii178.61 (18)
C13—C12—C14—C13ii0.6 (4)C23—C22—C24—C23iii0.6 (3)
C11—C12—C14—C13ii179.33 (19)C21—C22—C24—C23iii178.57 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.87 (2)1.99 (2)2.804 (2)155 (3)
O1—H1···O40.87 (2)2.57 (3)3.074 (3)118 (2)
O1—H2···Cl10.84 (2)2.43 (2)3.2731 (16)177 (3)

Experimental details

Crystal data
Chemical formula[Fe(C8H4N2)2(H2O)2][FeCl4]2·4CH3NO2
Mr987.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.1307 (9), 12.1554 (9), 13.8209 (10)
β (°) 102.466 (1)
V3)1989.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.27 × 0.27 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.661, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
11573, 4397, 3541
Rint0.030
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.03
No. of reflections4397
No. of parameters233
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—O12.0884 (15)Fe2—Cl22.1811 (6)
Fe1—N212.1309 (17)Fe2—Cl32.1968 (6)
Fe1—N112.1649 (17)Fe2—Cl42.1996 (6)
Cl1—Fe22.2070 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.872 (17)1.99 (2)2.804 (2)155 (3)
O1—H1···O40.872 (17)2.57 (3)3.074 (3)118 (2)
O1—H2···Cl10.840 (16)2.434 (17)3.2731 (16)177 (3)
 

Acknowledgements

The authors thank Professor Ian D. Williams and Dr Herman H.-Y. Sung of Department of Chemistry, The Hong Kong University of Technology, for their kind help during the X-ray study and for valuable discussions. This work was supported financially by the Faculty of Science, Naresuan University.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainok, K., Harding, D. J., Moubaraki, B., Batten, S. R. & Murray, S. R. (2012). Unpublished results.  Google Scholar
First citationChainok, K., Neville, S. M., Moubaraki, B., Batten, S. R., Murray, K. S., Forsyth, C. M., Cashion, J. D. & Haller, K. J. (2010). Dalton Trans. 39, 10900–10909.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationMurray, K. S. (2008). Eur. J. Inorg. Chem. pp. 3101–3121.  Web of Science CrossRef Google Scholar
First citationNeville, S. M., Leita, B. A., Halder, G. J., Kepert, C. J., Moubaraki, B., Létard, J.-F. & Murray, K. S. (2008). Chem. Eur. J. 14, 10123–10133.  CrossRef PubMed CAS Google Scholar
First citationNeville, S. M., Leita, B. A., Offermann, D. A., Duriska, M. B., Moubaraki, B., Chapman, K. W., Halder, J. D. & Murray, K. S. (2007). Eur. J. Inorg. Chem. pp. 1073–1085.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m211-m212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds