organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen 4-ammonio­phenyl­phospho­n­ate

aInstitut für Chemie, Naturwissenschaftliche Fakulät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 8 December 2011; accepted 22 December 2011; online 7 January 2012)

The title compound, C6H8NO3P, is isostructural with p-arsanilic acid. It exists as the zwitterion H3N+C6H4PO3H. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen-bond bridges, giving a three-dimensional network structure. The strongest hydrogen bonds are formed between adjacent PO3H groups with O⋯O distances of 2.577 (2) Å.

Related literature

For the synthesis of 4-amino­phenyl­phospho­nic acid, see: Cooper et al. (2006[Cooper, R. J., Camp, P. J., Gordon, R. J., Henderson, D. K., Henry, D. C. R., McNab, H., De Silva, S. S., Tackley, D., Tasker, P. A. & Wight, P. (2006). Dalton Trans. pp. 2785-2793.]). For the crystal structure of p-arsanilic acid, see: Nuttall & Hunter (1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]). For a description of the TOPOS program, see: Blatov & Proserpio (2009[Blatov, V. A. & Proserpio, D. M. (2009). Acta Cryst. A65, 202-212.]). For graph-set descriptors of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For tables of bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO3P

  • Mr = 173.10

  • Monoclinic, P 21

  • a = 7.0967 (13) Å

  • b = 6.2911 (8) Å

  • c = 8.4290 (13) Å

  • β = 100.606 (14)°

  • V = 369.89 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.28 × 0.19 × 0.06 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 2885 measured reflections

  • 1941 independent reflections

  • 1801 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.063

  • S = 1.08

  • 1941 reflections

  • 116 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 864 Friedel pairs

  • Flack parameter: 0.13 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H4⋯O1i 0.95 (3) 1.64 (3) 2.5772 (17) 166 (3)
N—H1⋯O2ii 0.92 (2) 1.83 (2) 2.7459 (19) 172 (2)
N—H2⋯O1iii 0.93 (2) 1.83 (2) 2.751 (2) 170 (2)
N—H3⋯O2iv 0.91 (2) 1.78 (2) 2.692 (2) 178 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+1]; (iv) x, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compound (I) is isostructural to the corresponding arsenic derivative p-arsanilic acid (Nuttall & Hunter, 1996). Like in the case of the arsenic derivative, compound (I) exists in the form of zwitter ions H3N+C6H4PO3H-, i.e. p-ammoniophenylphosphonate. Phosphorus is coordinated nearly tetrahedrally by three O atoms and the carbon atom of the aryl group. The bond lengths between phophorus and the terminal oxygen atoms O1 and O2 are found to be shorter (1.517 (1) and 1.511 (1) Å) than the P—OH bond (1.569 (1) Å). This is in agreement with the orbservation in p-arsanilic acid with As—O bonds of 1.656 (6), 1.669 (6) and 1.737 (8) Å. The C—N bond legth of 1.465 (2) Å is essentially the same as in p-arsanilic acid (1.479 (10) Å). This is a typical value for Caryl NH3+ distances (Allen et al., 1987).

The zwitterions are linked by two different types of hydrogen bonds (Table 1). The strongest hydrogen bonds are observed in the case of O—H..O bridges that are formed between adjacing PO3H units. Consequently chains with C1,1(4) motifs are formed. Additionally there are N—H···O hydrogen bridges, that are formed between ammonium nitrogen atoms as donors and phosphonate oxygen atoms as acceptors. In this case C1,1(8) structural motifs are found (Bernstein et al., 1995).

As a result of the linkage of NH3+ and PO3H- groups by hydrogen bonds puckered 63 nets are formed. A further (covalent) linkage of the NH3+ and PO3H- groups by C6H4 units, which act as a kind of pillars between the NH3+-PO3H- layers, leads to a three-dimensional network. This network contains O atoms as 3- c nodes and P and N atoms as 4- c nodes. According to a topological analysis using TOPOS the three-dimensional net can be described by the Schläfli symbol {63.82.10}{63.83}{63}2 (Blatov & Proserpio, 2009).

Related literature top

For the synthesis of 4-aminophenylphosphonic acid, see: Cooper et al. (2006). For the crystal structure of p-arsanilic acid, see: Nuttall & Hunter (1996). For a description of the TOPOS program, see: Blatov & Proserpio (2009). For graph-set descriptors of hydrogen bonds, see: Bernstein et al. (1995). For tables of bond lengths in organic compounds, see: Allen et al. (1987).

Experimental top

4-aminophenylphosphonic acid was synthesized according to a published procedure by Cooper et al. (2006). Single crystals were obtained by recrystallization from hot water.

Refinement top

H atoms bonded to C were placed in calculated positions with a C—H distance of 0.95 Å, Uiso(H)= 1.2Ueq(C). H atoms bonded to N were located from difference fourier maps and refined with N—H distances fixed in the range of 0.91–0.93 Å, Uiso(H) were refined freely. The H atom attached to the phosphonate O atom was located from the difference fourier map and refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) displaying the hydrogen bond network.
Hydrogen 4-ammoniophenylphosphonate top
Crystal data top
C6H8NO3PZ = 2
Mr = 173.10F(000) = 180
Monoclinic, P21Dx = 1.554 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.0967 (13) ŵ = 0.33 mm1
b = 6.2911 (8) ÅT = 200 K
c = 8.4290 (13) ÅPlate, colourless
β = 100.606 (14)°0.28 × 0.19 × 0.06 mm
V = 369.89 (10) Å3
Data collection top
Stoe IPDS 2T
diffractometer
1801 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 29.1°, θmin = 2.5°
Detector resolution: 6.67 pixels mm-1h = 99
rotation method scansk = 88
2885 measured reflectionsl = 1111
1941 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.0226P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
1941 reflectionsΔρmax = 0.30 e Å3
116 parametersΔρmin = 0.24 e Å3
4 restraintsAbsolute structure: Flack (1983), 864 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (8)
Crystal data top
C6H8NO3PV = 369.89 (10) Å3
Mr = 173.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.0967 (13) ŵ = 0.33 mm1
b = 6.2911 (8) ÅT = 200 K
c = 8.4290 (13) Å0.28 × 0.19 × 0.06 mm
β = 100.606 (14)°
Data collection top
Stoe IPDS 2T
diffractometer
1801 reflections with I > 2σ(I)
2885 measured reflectionsRint = 0.022
1941 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.30 e Å3
S = 1.08Δρmin = 0.24 e Å3
1941 reflectionsAbsolute structure: Flack (1983), 864 Friedel pairs
116 parametersAbsolute structure parameter: 0.13 (8)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.16365 (5)0.66144 (6)0.17272 (4)0.01583 (9)
O20.33057 (17)0.6022 (2)0.09314 (14)0.0225 (3)
O10.02778 (17)0.5711 (2)0.09090 (14)0.0214 (3)
O30.1487 (2)0.9089 (2)0.19018 (14)0.0243 (3)
H40.086 (5)0.972 (5)0.091 (4)0.065 (10)*
N0.3279 (2)0.3192 (2)0.85315 (16)0.0188 (3)
H10.446 (3)0.256 (4)0.878 (3)0.030 (6)*
H20.229 (3)0.226 (3)0.862 (3)0.032 (7)*
H30.332 (4)0.417 (4)0.933 (3)0.040 (7)*
C40.2901 (2)0.4096 (3)0.69025 (18)0.0167 (3)
C60.2847 (2)0.3629 (3)0.4075 (2)0.0196 (3)
H6A0.30680.27720.31990.024*
C10.2134 (2)0.5699 (3)0.37885 (18)0.0169 (3)
C50.3230 (2)0.2830 (3)0.56352 (19)0.0199 (3)
H5A0.37130.14280.58330.024*
C30.2190 (2)0.6139 (3)0.66533 (18)0.0197 (4)
H3A0.19670.69830.75350.024*
C20.1805 (2)0.6939 (3)0.50798 (18)0.0188 (4)
H2A0.13160.83400.48890.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.01598 (16)0.01927 (19)0.01195 (14)0.00100 (19)0.00178 (11)0.00142 (18)
O20.0202 (5)0.0307 (8)0.0176 (5)0.0028 (5)0.0059 (4)0.0041 (4)
O10.0173 (6)0.0266 (7)0.0190 (5)0.0008 (5)0.0003 (4)0.0048 (5)
O30.0343 (7)0.0199 (7)0.0169 (6)0.0007 (6)0.0002 (5)0.0001 (5)
N0.0178 (7)0.0227 (9)0.0157 (6)0.0003 (5)0.0023 (5)0.0020 (5)
C40.0135 (6)0.0212 (8)0.0150 (6)0.0018 (6)0.0019 (5)0.0016 (6)
C60.0225 (8)0.0195 (8)0.0169 (7)0.0016 (6)0.0039 (6)0.0029 (6)
C10.0150 (7)0.0214 (8)0.0138 (7)0.0021 (6)0.0018 (5)0.0003 (6)
C50.0206 (7)0.0184 (8)0.0210 (7)0.0024 (7)0.0045 (6)0.0002 (7)
C30.0218 (7)0.0224 (11)0.0155 (6)0.0014 (6)0.0049 (6)0.0022 (6)
C20.0209 (7)0.0174 (10)0.0180 (7)0.0018 (6)0.0033 (5)0.0007 (6)
Geometric parameters (Å, º) top
P—O21.5114 (13)C4—C51.386 (2)
P—O11.5165 (13)C6—C51.387 (2)
P—O31.5692 (14)C6—C11.402 (3)
P—C11.8026 (16)C6—H6A0.9500
O3—H40.95 (3)C1—C21.393 (2)
N—C41.465 (2)C5—H5A0.9500
N—H10.918 (17)C3—C21.398 (2)
N—H20.928 (17)C3—H3A0.9500
N—H30.908 (18)C2—H2A0.9500
C4—C31.383 (2)
O2—P—O1114.54 (7)C5—C6—C1120.08 (16)
O2—P—O3110.99 (8)C5—C6—H6A120.0
O1—P—O3110.14 (8)C1—C6—H6A120.0
O2—P—C1108.58 (8)C2—C1—C6119.51 (15)
O1—P—C1108.57 (8)C2—C1—P122.87 (14)
O3—P—C1103.37 (8)C6—C1—P117.60 (12)
P—O3—H4111 (2)C4—C5—C6119.41 (17)
C4—N—H1112.4 (15)C4—C5—H5A120.3
C4—N—H2108.1 (15)C6—C5—H5A120.3
H1—N—H2112 (2)C4—C3—C2118.74 (15)
C4—N—H3114.3 (18)C4—C3—H3A120.6
H1—N—H3103 (2)C2—C3—H3A120.6
H2—N—H3107 (2)C1—C2—C3120.55 (16)
C3—C4—C5121.71 (15)C1—C2—H2A119.7
C3—C4—N120.13 (15)C3—C2—H2A119.7
C5—C4—N118.15 (16)
C5—C6—C1—C20.3 (3)C3—C4—C5—C60.3 (2)
C5—C6—C1—P179.11 (13)N—C4—C5—C6178.67 (16)
O2—P—C1—C2135.65 (14)C1—C6—C5—C40.0 (3)
O1—P—C1—C299.23 (15)C5—C4—C3—C20.3 (2)
O3—P—C1—C217.73 (16)N—C4—C3—C2178.62 (14)
O2—P—C1—C645.59 (15)C6—C1—C2—C30.3 (2)
O1—P—C1—C679.53 (14)P—C1—C2—C3179.06 (13)
O3—P—C1—C6163.52 (13)C4—C3—C2—C10.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O1i0.95 (3)1.64 (3)2.5772 (17)166 (3)
N—H1···O2ii0.92 (2)1.83 (2)2.7459 (19)172 (2)
N—H2···O1iii0.93 (2)1.83 (2)2.751 (2)170 (2)
N—H3···O2iv0.91 (2)1.78 (2)2.692 (2)178 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H8NO3P
Mr173.10
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)7.0967 (13), 6.2911 (8), 8.4290 (13)
β (°) 100.606 (14)
V3)369.89 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.28 × 0.19 × 0.06
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2885, 1941, 1801
Rint0.022
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 1.08
No. of reflections1941
No. of parameters116
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24
Absolute structureFlack (1983), 864 Friedel pairs
Absolute structure parameter0.13 (8)

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O1i0.95 (3)1.64 (3)2.5772 (17)166 (3)
N—H1···O2ii0.918 (17)1.833 (18)2.7459 (19)172 (2)
N—H2···O1iii0.928 (17)1.832 (18)2.751 (2)170 (2)
N—H3···O2iv0.908 (18)1.784 (18)2.692 (2)178 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x, y, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlatov, V. A. & Proserpio, D. M. (2009). Acta Cryst. A65, 202–212.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCooper, R. J., Camp, P. J., Gordon, R. J., Henderson, D. K., Henry, D. C. R., McNab, H., De Silva, S. S., Tackley, D., Tasker, P. A. & Wight, P. (2006). Dalton Trans. pp. 2785–2793.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds