metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ido-κN1]zinc

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: hxxychj@mail.tjnu.edu.cn

(Received 11 January 2012; accepted 17 January 2012; online 25 January 2012)

The title mononuclear complex, [Zn(C11H7N6)2(H2O)2], is composed of one ZnII ion, two deprotonated ppt ligands [Hppt = 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole] and two coordinating water mol­ecules. The asymmetric unit consists of one half-mol­ecule that is completed by application of a centre of symmetry. The ZnII atom is six-coordinated in an octa­hedral environment, surrounded by two O atoms in the axial positions and four N atoms in the equatorial plane. Adjacent mononuclear units are further linked via O—H⋯N hydrogen-bonding inter­actions, forming a two-dimensional network along (100).

Related literature

For the use of multidentate ligands containing N-donor heterocyclic groups in the preparation of metal complexes, see: Du et al. (2006[Du, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785-5792.]); Li et al. (2010[Li, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034-5042.], 2011[Li, C.-P., Wu, J.-M. & Du, M. (2011). Inorg. Chem. 50, 9284-9289.]); Wang et al. (2012[Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, o130.]). For crystal structures based on the 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole ligand, see: Liu et al. (2009[Liu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943-6945.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H7N6)2(H2O)2]

  • Mr = 547.85

  • Monoclinic, P 21 /c

  • a = 10.568 (10) Å

  • b = 12.574 (11) Å

  • c = 9.373 (8) Å

  • β = 114.483 (14)°

  • V = 1133.5 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1996[Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.742, Tmax = 0.805

  • 5516 measured reflections

  • 1995 independent reflections

  • 1476 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.13

  • 1995 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N5i 0.85 1.99 2.833 (4) 173
O1—H1A⋯N2ii 0.85 2.13 2.975 (4) 175
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Multidentate ligands containing N-donor heterocyclic groups, such as the pyridyl, pyrazinyl, imidazolyl, oxadiazolyl, and triazolyl (see Du et al., 2006; Li et al., 2010; Li et al., 2011;Wang et al., 2012), have been widely used to prepare diverse metallo supramolecular complexes. In this context, 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole (Hppt), an asymmetric ligand with multiple binding sites, has attracted little attention thus far (see Liu et al., 2009). Herein, we report on the title complex [Zn(ppt)2(H2O)2] crystallizing in the monoclinic space group P21/c, which shows a mononuclear coordination motif and H-bonding supramolecular layers.

The molecular structure of the title complex is centrosymmetric. As illustrated in Fig. 1, the asymmetric unit of this mononuclear complex is provided by a half-occupied ZnII center as well as one deprotonated ppt and one water ligands. The ZnII ion is six-coordinated to four nitrogen atoms from two ppt ligands with the Zn—N distances of 2.040 (3) Å and 2.212 (3) Å, as well as two axial water molecules with the Zn—O distance of 2.252 (3) Å. The deprotonated ppt ligand adopts the chelating coordination mode by using the pyrazinyl and triazolyl groups with the N1—Zn1—N3 angle of 77.52 (11)°.

As shown in Fig. 2, the adjacent mononuclear molecules are further linked to form a two-dimensional network via O1—H1A···N2ii [symmetry operation (ii) = -x+2, y-1/2, -z+5/2] hydrogen bonding between the water ligands and the uncoordinated pyrazinyl nitrogen atoms, as well as O1—H1B···N5i [symmetry operation (i) = x, -y+1/2, z+1/2] between the water ligands and 4-position nitrogen atoms of triazole (Table 1). Furthermore, intralayered π···π stacking interactions are also observed between the triazole (N3, N4, N5, C5, C6) and pyrazine (N1, N2, C1—C4) rings with the center-to-center distance of 3.558 (4) Å and dihedral angle between both best planes of 9.5 (2) °, as well as between the triazole ring (N3, N4, N5, C5, C6) and pyridyl groups (N6, C7—C11) with the center-to-center distance of 3.807 (4) Å and dihedral angle of 8.5 (2) °.

Related literature top

For the use of multidentate ligands containing N-donor heterocyclic groups in the preparation of metal complexes, see: Du et al. (2006); Li et al. (2010, 2011); Wang et al. (2012). For crystal structures based on the 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole ligand, see: Liu et al. (2009).

Experimental top

A CH3OH solution (3 ml) of Hppt (11.2 mg, 0.05 mmol) was carefully layered onto an aqueous solution of Zn(OAc)2.2H2O (21.9 mg, 0.1 mmol) in a straight glass tube. After evaporating the solvents slowly for ca 1 week, colorless block single crystals suitable for X-ray analysis were produced. Analysis, calculated for C22H18ZnN12O2: C, 48.23; H, 3.31; N, 30.68%; found: C, 49.05; H, 3.38; N, 30.59%.

Refinement top

All H atoms were initially located in a difference Fourier map, which were then constrained to an ideal geometry, and refined as riding atoms: C—H = 0.93 Å (CHaromatic) and O—H = 0.85 Å (OH), with Uiso(H) = 1.2Ueq (C) and Uiso(H) = 1.5Ueq (O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing displacement ellipsoids for all non-H atoms drawn at the 30% probability level. [Symmetry code (A): -x+2, -y, -z+2.]
[Figure 2] Fig. 2. View of the two-dimensional network connected via O–H···N hydrogen bonds (red dashed lines).
Diaquabis[5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ido- κN1]zinc top
Crystal data top
[Zn(C11H7N6)2(H2O)2]F(000) = 560
Mr = 547.85Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2124 reflections
a = 10.568 (10) Åθ = 2.1–27.2°
b = 12.574 (11) ŵ = 1.13 mm1
c = 9.373 (8) ÅT = 296 K
β = 114.483 (14)°Block, colourless
V = 1133.5 (17) Å30.28 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1995 independent reflections
Radiation source: fine-focus sealed tube1476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
h = 912
Tmin = 0.742, Tmax = 0.805k = 1214
5516 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.4706P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1995 reflectionsΔρmax = 0.78 e Å3
170 parametersΔρmin = 1.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (8)
Crystal data top
[Zn(C11H7N6)2(H2O)2]V = 1133.5 (17) Å3
Mr = 547.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.568 (10) ŵ = 1.13 mm1
b = 12.574 (11) ÅT = 296 K
c = 9.373 (8) Å0.28 × 0.22 × 0.20 mm
β = 114.483 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1995 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
1476 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.805Rint = 0.032
5516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.13Δρmax = 0.78 e Å3
1995 reflectionsΔρmin = 1.16 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.00001.00000.0345 (2)
O10.8507 (3)0.03619 (18)1.1088 (3)0.0401 (7)
H1A0.85980.00731.18190.060*
H1B0.83820.10111.12520.060*
N11.0865 (3)0.1612 (2)1.0734 (3)0.0289 (7)
N21.1330 (4)0.3772 (2)1.1491 (3)0.0373 (8)
N30.8842 (3)0.0902 (2)0.8093 (3)0.0315 (7)
N40.7855 (3)0.0703 (2)0.6615 (3)0.0339 (8)
N50.8335 (3)0.2478 (2)0.6850 (3)0.0279 (7)
N60.4516 (4)0.1950 (3)0.1161 (4)0.0556 (10)
C11.1805 (4)0.1930 (3)1.2132 (4)0.0335 (9)
H11.23120.14241.28720.040*
C21.2040 (4)0.3003 (3)1.2501 (4)0.0370 (9)
H21.27120.31961.34810.044*
C31.0395 (4)0.3452 (3)1.0079 (4)0.0346 (10)
H30.98980.39630.93420.042*
C41.0145 (4)0.2375 (3)0.9682 (3)0.0270 (8)
C50.9116 (4)0.1956 (2)0.8199 (3)0.0269 (8)
C60.7575 (4)0.1661 (2)0.5912 (4)0.0286 (8)
C70.6541 (4)0.1783 (3)0.4281 (4)0.0325 (9)
C80.6080 (4)0.2768 (3)0.3576 (4)0.0385 (10)
H80.64210.33940.41310.046*
C90.5105 (5)0.2796 (3)0.2035 (4)0.0462 (11)
H90.48400.34610.15730.055*
C100.4974 (6)0.1014 (4)0.1848 (5)0.0703 (16)
H100.46030.04030.12640.084*
C110.5966 (5)0.0888 (3)0.3376 (4)0.0611 (14)
H110.62410.02120.37880.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0508 (4)0.0163 (3)0.0241 (3)0.0012 (3)0.0031 (3)0.0024 (2)
O10.064 (2)0.0205 (12)0.0351 (13)0.0068 (12)0.0202 (13)0.0035 (10)
N10.037 (2)0.0235 (15)0.0227 (14)0.0021 (13)0.0087 (13)0.0003 (11)
N20.048 (2)0.0283 (16)0.0275 (15)0.0072 (14)0.0081 (14)0.0059 (12)
N30.044 (2)0.0180 (15)0.0244 (14)0.0005 (13)0.0063 (13)0.0009 (11)
N40.046 (2)0.0230 (15)0.0229 (14)0.0020 (14)0.0039 (13)0.0004 (11)
N50.0378 (19)0.0204 (14)0.0219 (13)0.0003 (13)0.0089 (13)0.0017 (11)
N60.058 (3)0.067 (3)0.0285 (17)0.003 (2)0.0046 (16)0.0041 (17)
C10.037 (2)0.033 (2)0.0236 (17)0.0025 (17)0.0055 (16)0.0005 (14)
C20.044 (3)0.036 (2)0.0243 (16)0.0060 (18)0.0069 (16)0.0065 (15)
C30.050 (3)0.0229 (18)0.0250 (16)0.0016 (16)0.0094 (18)0.0020 (14)
C40.039 (2)0.0207 (17)0.0214 (16)0.0010 (15)0.0123 (15)0.0009 (12)
C50.039 (2)0.0180 (16)0.0228 (16)0.0014 (15)0.0116 (15)0.0009 (13)
C60.037 (2)0.0223 (17)0.0244 (16)0.0002 (15)0.0103 (15)0.0013 (13)
C70.042 (2)0.0292 (19)0.0235 (16)0.0015 (17)0.0115 (16)0.0006 (14)
C80.047 (3)0.033 (2)0.0306 (18)0.0029 (18)0.0116 (18)0.0024 (15)
C90.047 (3)0.052 (3)0.034 (2)0.009 (2)0.0109 (19)0.0141 (18)
C100.090 (4)0.054 (3)0.036 (2)0.018 (3)0.005 (2)0.008 (2)
C110.088 (4)0.034 (2)0.037 (2)0.009 (2)0.001 (2)0.0009 (18)
Geometric parameters (Å, º) top
Zn1—N32.040 (3)N6—C91.329 (5)
Zn1—N3i2.040 (3)N6—C101.332 (6)
Zn1—N1i2.212 (3)C1—C21.390 (5)
Zn1—N12.212 (3)C1—H10.9300
Zn1—O12.252 (3)C2—H20.9300
Zn1—O1i2.252 (3)C3—C41.401 (5)
O1—H1A0.8501C3—H30.9300
O1—H1B0.8502C4—C51.463 (5)
N1—C11.336 (4)C6—C71.474 (5)
N1—C41.361 (4)C7—C111.388 (5)
N2—C21.343 (5)C7—C81.393 (5)
N2—C31.343 (4)C8—C91.385 (5)
N3—C51.352 (4)C8—H80.9300
N3—N41.368 (4)C9—H90.9300
N4—C61.346 (4)C10—C111.390 (6)
N5—C51.359 (4)C10—H100.9300
N5—C61.375 (4)C11—H110.9300
N3—Zn1—N3i180.00 (12)N2—C2—C1122.2 (3)
N3—Zn1—N1i102.48 (11)N2—C2—H2118.9
N3i—Zn1—N1i77.52 (11)C1—C2—H2118.9
N3—Zn1—N177.52 (11)N2—C3—C4122.1 (3)
N3i—Zn1—N1102.48 (11)N2—C3—H3118.9
N1i—Zn1—N1180.0C4—C3—H3118.9
N3—Zn1—O190.35 (12)N1—C4—C3120.1 (3)
N3i—Zn1—O189.65 (12)N1—C4—C5114.0 (3)
N1i—Zn1—O192.83 (11)C3—C4—C5125.8 (3)
N1—Zn1—O187.17 (11)N3—C5—N5112.2 (3)
N3—Zn1—O1i89.65 (12)N3—C5—C4118.4 (3)
N3i—Zn1—O1i90.35 (12)N5—C5—C4129.5 (3)
N1i—Zn1—O1i87.17 (11)N4—C6—N5113.9 (3)
N1—Zn1—O1i92.83 (11)N4—C6—C7121.3 (3)
O1—Zn1—O1i180.0N5—C6—C7124.8 (3)
Zn1—O1—H1A111.6C11—C7—C8116.9 (3)
Zn1—O1—H1B117.7C11—C7—C6119.9 (3)
H1A—O1—H1B116.5C8—C7—C6123.2 (3)
C1—N1—C4117.7 (3)C9—C8—C7118.7 (3)
C1—N1—Zn1128.5 (2)C9—C8—H8120.7
C4—N1—Zn1112.7 (2)C7—C8—H8120.7
C2—N2—C3116.6 (3)N6—C9—C8125.4 (4)
C5—N3—N4107.7 (3)N6—C9—H9117.3
C5—N3—Zn1116.6 (2)C8—C9—H9117.3
N4—N3—Zn1135.6 (2)N6—C10—C11124.5 (4)
C6—N4—N3104.6 (3)N6—C10—H10117.7
C5—N5—C6101.6 (3)C11—C10—H10117.7
C9—N6—C10115.2 (3)C7—C11—C10119.3 (4)
N1—C1—C2121.3 (3)C7—C11—H11120.3
N1—C1—H1119.4C10—C11—H11120.3
C2—C1—H1119.4
N3—Zn1—N1—C1173.8 (3)N2—C3—C4—C5177.7 (4)
N3i—Zn1—N1—C16.2 (3)N4—N3—C5—N50.8 (4)
O1—Zn1—N1—C182.8 (3)Zn1—N3—C5—N5177.4 (2)
O1i—Zn1—N1—C197.2 (3)N4—N3—C5—C4179.8 (3)
N3—Zn1—N1—C46.1 (2)Zn1—N3—C5—C43.6 (4)
N3i—Zn1—N1—C4173.9 (2)C6—N5—C5—N30.5 (4)
O1—Zn1—N1—C484.9 (2)C6—N5—C5—C4179.4 (4)
O1i—Zn1—N1—C495.1 (2)N1—C4—C5—N39.0 (5)
N1i—Zn1—N3—C5178.8 (3)C3—C4—C5—N3169.2 (4)
N1—Zn1—N3—C51.2 (3)N1—C4—C5—N5172.2 (3)
O1—Zn1—N3—C585.8 (3)C3—C4—C5—N59.6 (6)
O1i—Zn1—N3—C594.2 (3)N3—N4—C6—N50.4 (4)
N1i—Zn1—N3—N45.9 (4)N3—N4—C6—C7179.8 (3)
N1—Zn1—N3—N4174.1 (4)C5—N5—C6—N40.0 (4)
O1—Zn1—N3—N498.8 (4)C5—N5—C6—C7179.8 (3)
O1i—Zn1—N3—N481.2 (4)N4—C6—C7—C118.2 (6)
C5—N3—N4—C60.7 (4)N5—C6—C7—C11171.6 (4)
Zn1—N3—N4—C6176.3 (3)N4—C6—C7—C8171.0 (4)
C4—N1—C1—C20.1 (5)N5—C6—C7—C89.2 (6)
Zn1—N1—C1—C2167.1 (3)C11—C7—C8—C90.8 (6)
C3—N2—C2—C11.5 (6)C6—C7—C8—C9180.0 (4)
N1—C1—C2—N20.8 (6)C10—N6—C9—C82.9 (7)
C2—N2—C3—C41.3 (6)C7—C8—C9—N62.6 (7)
C1—N1—C4—C30.3 (5)C9—N6—C10—C111.5 (8)
Zn1—N1—C4—C3168.9 (3)C8—C7—C11—C100.4 (7)
C1—N1—C4—C5178.6 (3)C6—C7—C11—C10178.9 (5)
Zn1—N1—C4—C59.5 (4)N6—C10—C11—C70.0 (9)
N2—C3—C4—N10.4 (6)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N5ii0.851.992.833 (4)173
O1—H1A···N2iii0.852.132.975 (4)175
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H7N6)2(H2O)2]
Mr547.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.568 (10), 12.574 (11), 9.373 (8)
β (°) 114.483 (14)
V3)1133.5 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1996)
Tmin, Tmax0.742, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
5516, 1995, 1476
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.13
No. of reflections1995
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 1.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N5i0.851.992.833 (4)172.7
O1—H1A···N2ii0.852.132.975 (4)175.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+5/2.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (No. 52XQ1104).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-P., Wu, J.-M. & Du, M. (2011). Inorg. Chem. 50, 9284–9289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034–5042.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943–6945.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, o130.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds