metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­(2,2′-bi­pyridine-κ2N,N′)zinc]-μ-2,2′-[1,4-phenylene­bis­(sulfanedi­yl)]di­acetato-κ2O:O′]

aJinhua Professional Technical College, No. 1188 Wuzhou Street, Jinhua, Zhejiang 321007, People's Republic of China, and bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 22 November 2011; accepted 23 December 2011; online 7 January 2012)

In the polymeric title complex, [Zn(C10H8O4S2)(C10H8N2)(H2O)2]n, the Zn2+ ion lies on a twofold rotation axis and exhibits an octa­hedral environment, in which it is coordinated by two trans O atoms from two symmetry-related 2,2′-[1,4-phenyl­enebis(sulfanedi­yl)]diacetate anions, two N atoms from one 2,2′-bipyridine ligand, and two cis O atoms from water mol­ecules. The dihedral angle between the two pyridine rings is 11.5 (1)°. Adjacent Zn2+ ions are bridged in a monodentate manner by the diacetate anions, forming a chain structure extending parallel to [101], and are further linked into the final three-dimensional structure by O—H⋯O hydrogen bonds between the coordinating water mol­ecules as donor and the non-coordinating carboxyl­ate O atoms as acceptor atoms.

Related literature

For background to 1,4-benzene­bis­(thio­acetic acid), including its synthesis and coordination behaviour, see: Yin & Feng (2009[Yin, J.-L. & Feng, Y.-L. (2009). Acta Cryst. E65, o1206.]); Yin et al. (2009[Yin, J. L., Feng, Y. L. & Lan, Y. Z. (2009). Inorg. Chim. Acta, 362, 3769-3776.]); Chen et al. (2010[Chen, J., Yin, J. L., Wang, X. J. & Feng, Y. L. (2010). Chin. J. Inorg. Chem. 26, 1311-1314.]); Wang et al. (2011a[Wang, X. J., Zhan, C. H., Feng, Y. L., Lan, Y. Z., Yin, J. L. & Cheng, J. W. (2011a). CrystEngComm, 13, 684-689.],b[Wang, X. J., Yin, J. L., Chen, J. & Feng, Y. L. (2011b). Chin. J. Inorg. Chem. 27, 367-371.]); Jiang et al. (2012[Jiang, Z. G., Wang, X. J., Yin, J. L., Feng, Y. L. & Cheng, J. W. (2012). Chin. J. Inorg. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8O4S2)(C10H8N2)(H2O)2]

  • Mr = 513.87

  • Monoclinic, C 2/c

  • a = 20.4396 (8) Å

  • b = 12.8695 (8) Å

  • c = 7.9798 (4) Å

  • β = 90.765 (3)°

  • V = 2098.88 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 296 K

  • 0.22 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.]) Tmin = 0.761, Tmax = 0.853

  • 16253 measured reflections

  • 2448 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.070

  • S = 1.04

  • 2448 reflections

  • 147 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1W 2.0896 (11)
Zn1—N1 2.1477 (13)
Zn1—O1 2.1529 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.83 (1) 1.90 (2) 2.7107 (15) 170 (2)
O1W—H1WB⋯O2 0.82 (1) 1.86 (2) 2.6582 (16) 164 (2)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Crystal Impact, 2008[Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,4-Benzenebis(thioacetic acid), (C10H10O4S2), is a flexible aromatic multi-carboxylate ligand, which can be prepared from 1,4-benzenebisthiol (Yin & Feng, 2009). Compared with rigid ligands, these flexible aromatic carboxylate ligands contain more coordination sites (viz. S and O atoms) to construct various extended structures with different metal ions. Recently, some complexes derived from 1,4-benzenebis(thioacetic acid) with bipyridine ligands have been reported (Yin et al., 2009; Chen et al., 2010; Wang et al., 2011a,b; Jiang et al., 2012). Here we report the synthesis and structure of a new complex, [Zn(C10H8O4S2)(C10H8N2)(H2O)2]n, (I).

Complex (I) is isotypic with its Co(II) analogue (Jiang et al., 2012). A view on the molecular structure of (I), showing the coordination environment of the Zn2+ ion, is presented in Fig. 1. The asymmetric unit consists of one Zn2+ ion (situated on a twofold rotation axis), half of a [C10H8O4S2]2- anion, half of a 2,2'-bipy molecule, and one coordinating water molecule. The Zn2+ ion is six-coordinated by two O atoms from two symmetry-related [C10H8O4S2]2- anions (Zn—O 2.1529 (10) Å), two N atoms from one chelating 2,2'-bipy molecule (Zn—N 2.1477 (13) Å), and two water molecules (Zn—O 2.0896 (11) Å) to form a slightly distorted octahedral geometry. The two pyridine rings in the bipy ligand are almost parallel with a dihedral angle of 11.5 (1)°. As shown in Fig. 2, adjacent Zn2+ ions are monodentately linked by the [C10H8O4S2]2- anions to form a chain structure running parallel to [101]. The chains are further linked by O—H···O hydrogen bonds to form the final three-dimensional supramolecular architecture (Fig. 3).

Related literature top

For background to 1,4-benzenebis(thioacetic acid), including its synthesis and coordination behaviour, see: Yin & Feng (2009); Yin et al. (2009); Chen et al. (2010); Wang et al. (2011a,b); Jiang et al. (2012).

Experimental top

A mixture of 1,4-benzenebis(thioacetic acid) (0.103 g, 0.4 mmol), ZnCl2.6H2O (0.054 g, 0.4 mmol), 2,2'-bipy (0.031 g, 0.2 mmol), and Na2CO3 (0.042 g, 0.4 mmol) in H2O (16 ml)/C2H5OH (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h, then cooled to room temperature over 3 d. Colourless crystals suitable for X-ray analysis were obtained.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms were located in difference Fourier maps and refined with an O—H distance restrained to 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1,y,-z + 1/2.]
[Figure 2] Fig. 2. The chain structure of the title complex. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure built through O—H···O hydrogen bonds (dashed lines).
catena-Poly[[diaqua(2,2'-bipyridine-κ2N,N')zinc]- µ-2,2'-[1,4-phenylenebis(sulfanediyl)]diacetato-κ2O:O'] top
Crystal data top
[Zn(C10H8O4S2)(C10H8N2)(H2O)2]F(000) = 1056
Mr = 513.87Dx = 1.626 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7952 reflections
a = 20.4396 (8) Åθ = 1.9–27.7°
b = 12.8695 (8) ŵ = 1.41 mm1
c = 7.9798 (4) ÅT = 296 K
β = 90.765 (3)°Block, colourless
V = 2098.88 (19) Å30.22 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2448 independent reflections
Radiation source: fine-focus sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.761, Tmax = 0.853k = 1516
16253 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.043P)2 + 0.7442P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C10H8O4S2)(C10H8N2)(H2O)2]V = 2098.88 (19) Å3
Mr = 513.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.4396 (8) ŵ = 1.41 mm1
b = 12.8695 (8) ÅT = 296 K
c = 7.9798 (4) Å0.22 × 0.16 × 0.11 mm
β = 90.765 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2237 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.853Rint = 0.026
16253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0253 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
2448 reflectionsΔρmin = 0.31 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.725191 (16)0.25000.03569 (9)
S10.676748 (19)0.62114 (4)0.78141 (5)0.04863 (12)
N10.44065 (7)0.85617 (9)0.31662 (16)0.0391 (3)
O1W0.57320 (6)0.61941 (8)0.18683 (14)0.0435 (3)
H1WA0.5703 (10)0.5693 (13)0.123 (2)0.052*
H1WB0.5785 (10)0.5933 (15)0.2793 (18)0.052*
O10.54190 (6)0.72445 (7)0.49896 (13)0.0398 (2)
O20.57240 (6)0.55857 (8)0.50514 (13)0.0446 (3)
C10.38250 (9)0.85086 (14)0.3913 (2)0.0484 (4)
H1A0.36330.78610.40610.058*
C20.34980 (10)0.93842 (17)0.4477 (2)0.0597 (5)
H2A0.30890.93290.49660.072*
C30.37950 (11)1.03389 (15)0.4292 (3)0.0618 (5)
H3A0.35941.09370.46880.074*
C40.43876 (10)1.03996 (13)0.3523 (2)0.0532 (4)
H4A0.45921.10400.33910.064*
C50.46836 (8)0.94978 (11)0.29374 (19)0.0403 (3)
C60.56711 (6)0.64669 (10)0.56961 (17)0.0319 (3)
C70.59312 (7)0.66315 (13)0.74760 (18)0.0395 (3)
H7A0.56520.62580.82450.047*
H7B0.59010.73650.77460.047*
C80.71752 (7)0.69346 (13)0.6228 (2)0.0408 (3)
C90.71738 (8)0.65950 (13)0.4586 (2)0.0479 (4)
H9A0.69580.59830.43000.057*
C100.75080 (8)0.78402 (14)0.6640 (2)0.0475 (4)
H10A0.75180.80700.77450.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04999 (16)0.02228 (13)0.03467 (14)0.0000.00485 (10)0.000
S10.0406 (2)0.0562 (3)0.0490 (2)0.00141 (17)0.00659 (17)0.01881 (18)
N10.0518 (7)0.0284 (6)0.0367 (6)0.0019 (5)0.0129 (5)0.0020 (5)
O1W0.0664 (7)0.0291 (5)0.0349 (5)0.0064 (5)0.0039 (5)0.0045 (4)
O10.0540 (6)0.0316 (5)0.0336 (5)0.0051 (4)0.0085 (5)0.0008 (4)
O20.0661 (7)0.0290 (5)0.0385 (5)0.0007 (5)0.0048 (5)0.0043 (4)
C10.0531 (9)0.0449 (9)0.0468 (9)0.0033 (7)0.0084 (7)0.0017 (7)
C20.0590 (11)0.0643 (12)0.0555 (11)0.0169 (9)0.0085 (8)0.0076 (9)
C30.0744 (13)0.0478 (10)0.0626 (11)0.0254 (9)0.0234 (9)0.0171 (8)
C40.0680 (11)0.0309 (8)0.0600 (10)0.0107 (7)0.0274 (9)0.0082 (7)
C50.0546 (8)0.0258 (6)0.0398 (7)0.0028 (6)0.0231 (6)0.0023 (5)
C60.0324 (6)0.0328 (7)0.0304 (6)0.0034 (5)0.0012 (5)0.0042 (5)
C70.0400 (7)0.0479 (8)0.0307 (7)0.0045 (6)0.0003 (6)0.0028 (6)
C80.0310 (7)0.0437 (8)0.0475 (8)0.0024 (6)0.0010 (6)0.0051 (7)
C90.0418 (8)0.0454 (9)0.0564 (10)0.0066 (7)0.0025 (7)0.0064 (7)
C100.0420 (8)0.0553 (10)0.0452 (9)0.0039 (7)0.0003 (7)0.0075 (7)
Geometric parameters (Å, º) top
Zn1—O1Wi2.0896 (11)C2—C31.379 (3)
Zn1—O1W2.0896 (11)C2—H2A0.9300
Zn1—N1i2.1477 (13)C3—C41.367 (3)
Zn1—N12.1477 (13)C3—H3A0.9300
Zn1—O1i2.1529 (10)C4—C51.392 (2)
Zn1—O12.1529 (10)C4—H4A0.9300
S1—C81.7861 (16)C5—C5i1.478 (4)
S1—C71.8095 (15)C6—C71.5247 (19)
N1—C11.339 (2)C7—H7A0.9700
N1—C51.3447 (19)C7—H7B0.9700
O1W—H1WA0.825 (14)C8—C91.382 (2)
O1W—H1WB0.817 (14)C8—C101.387 (2)
O1—C61.2557 (16)C9—C10ii1.388 (2)
O2—C61.2506 (17)C9—H9A0.9300
C1—C21.388 (3)C10—C9ii1.388 (2)
C1—H1A0.9300C10—H10A0.9300
O1Wi—Zn1—O1W98.69 (7)C1—C2—H2A120.8
O1Wi—Zn1—N1i168.43 (5)C4—C3—C2119.51 (17)
O1W—Zn1—N1i92.47 (5)C4—C3—H3A120.2
O1Wi—Zn1—N192.47 (5)C2—C3—H3A120.2
O1W—Zn1—N1168.43 (5)C3—C4—C5119.63 (17)
N1i—Zn1—N176.59 (7)C3—C4—H4A120.2
O1Wi—Zn1—O1i86.70 (4)C5—C4—H4A120.2
O1W—Zn1—O1i92.97 (4)N1—C5—C4121.03 (16)
N1i—Zn1—O1i89.66 (4)N1—C5—C5i115.91 (9)
N1—Zn1—O1i90.74 (4)C4—C5—C5i123.05 (11)
O1Wi—Zn1—O192.97 (4)O2—C6—O1125.11 (13)
O1W—Zn1—O186.70 (4)O2—C6—C7118.57 (12)
N1i—Zn1—O190.74 (4)O1—C6—C7116.32 (12)
N1—Zn1—O189.66 (4)C6—C7—S1114.48 (10)
O1i—Zn1—O1179.49 (5)C6—C7—H7A108.6
C8—S1—C7100.80 (7)S1—C7—H7A108.6
C1—N1—C5118.97 (14)C6—C7—H7B108.6
C1—N1—Zn1125.31 (11)S1—C7—H7B108.6
C5—N1—Zn1115.42 (11)H7A—C7—H7B107.6
Zn1—O1W—H1WA127.8 (14)C9—C8—C10119.04 (15)
Zn1—O1W—H1WB97.9 (14)C9—C8—S1120.80 (13)
H1WA—O1W—H1WB104.3 (17)C10—C8—S1120.15 (13)
C6—O1—Zn1125.00 (9)C8—C9—C10ii120.52 (16)
N1—C1—C2122.49 (17)C8—C9—H9A119.7
N1—C1—H1A118.8C10ii—C9—H9A119.7
C2—C1—H1A118.8C8—C10—C9ii120.43 (16)
C3—C2—C1118.3 (2)C8—C10—H10A119.8
C3—C2—H2A120.8C9ii—C10—H10A119.8
O1Wi—Zn1—N1—C17.41 (13)C2—C3—C4—C50.0 (3)
O1W—Zn1—N1—C1157.1 (2)C1—N1—C5—C42.5 (2)
N1i—Zn1—N1—C1176.39 (15)Zn1—N1—C5—C4171.45 (11)
O1i—Zn1—N1—C194.13 (13)C1—N1—C5—C5i178.37 (15)
O1—Zn1—N1—C185.55 (13)Zn1—N1—C5—C5i7.63 (19)
O1Wi—Zn1—N1—C5179.03 (10)C3—C4—C5—N12.3 (2)
O1W—Zn1—N1—C516.4 (3)C3—C4—C5—C5i178.72 (18)
N1i—Zn1—N1—C52.82 (7)Zn1—O1—C6—O21.0 (2)
O1i—Zn1—N1—C592.30 (10)Zn1—O1—C6—C7179.21 (9)
O1—Zn1—N1—C588.01 (10)O2—C6—C7—S151.79 (17)
O1Wi—Zn1—O1—C663.39 (12)O1—C6—C7—S1128.01 (12)
O1W—Zn1—O1—C635.15 (12)C8—S1—C7—C655.61 (13)
N1i—Zn1—O1—C6127.58 (12)C7—S1—C8—C980.93 (14)
N1—Zn1—O1—C6155.84 (12)C7—S1—C8—C10100.14 (14)
O1i—Zn1—O1—C614.13 (13)C10—C8—C9—C10ii1.0 (3)
C5—N1—C1—C20.6 (2)S1—C8—C9—C10ii179.94 (13)
Zn1—N1—C1—C2172.80 (13)C9—C8—C10—C9ii1.0 (3)
N1—C1—C2—C31.7 (3)S1—C8—C10—C9ii179.95 (13)
C1—C2—C3—C41.9 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.83 (1)1.90 (2)2.7107 (15)170 (2)
O1W—H1WB···O20.82 (1)1.86 (2)2.6582 (16)164 (2)
Symmetry code: (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H8O4S2)(C10H8N2)(H2O)2]
Mr513.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.4396 (8), 12.8695 (8), 7.9798 (4)
β (°) 90.765 (3)
V3)2098.88 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.22 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.761, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
16253, 2448, 2237
Rint0.026
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.04
No. of reflections2448
No. of parameters147
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—O1W2.0896 (11)Zn1—O12.1529 (10)
Zn1—N12.1477 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.825 (14)1.895 (15)2.7107 (15)169.7 (19)
O1W—H1WB···O20.817 (14)1.862 (15)2.6582 (16)164 (2)
Symmetry code: (i) x, y+1, z1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Yin, J. L., Wang, X. J. & Feng, Y. L. (2010). Chin. J. Inorg. Chem. 26, 1311–1314.  CAS Google Scholar
First citationCrystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJiang, Z. G., Wang, X. J., Yin, J. L., Feng, Y. L. & Cheng, J. W. (2012). Chin. J. Inorg. Chem. In the press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. J., Yin, J. L., Chen, J. & Feng, Y. L. (2011b). Chin. J. Inorg. Chem. 27, 367–371.  CAS Google Scholar
First citationWang, X. J., Zhan, C. H., Feng, Y. L., Lan, Y. Z., Yin, J. L. & Cheng, J. W. (2011a). CrystEngComm, 13, 684–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, J.-L. & Feng, Y.-L. (2009). Acta Cryst. E65, o1206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, J. L., Feng, Y. L. & Lan, Y. Z. (2009). Inorg. Chim. Acta, 362, 3769–3776.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds