metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The chain structure of $[Ni(C_4H_2O_4) (C_{12}H_8N_2)(H_2O)]_n$ with different types of fumarate bridging

Anna Uhrinová, Juraj Kuchár* and Juraj Černák

Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia Correspondence e-mail: juraj.kuchar@upjs.sk

Received 8 December 2011; accepted 19 December 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.022; wR factor = 0.057; data-to-parameter ratio = 14.6.

Using modified solvothermal conditions (longer cooling time), beside previously characterized dark-green crystals of $[Ni(C_4H_2O_4)(C_{12}H_8N_2)]$ (main product), a few light-green crystals of the polymeric title compound, catena-poly-[[aqua(1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II)]- μ -fumarato- $\kappa^2 O: O' - [aqua(1,10-phenanthroline-\kappa^2 N, N') nickel(II)] - \mu$ fumarato- $\kappa^4 O, O': O'', O'''$], [Ni(C₄H₂O₄)(C₁₂H₈N₂)(H₂O)]_n were isolated. Its crystal structure is made up from zigzag chains, propagating in [001], in which the Ni²⁺ ions are linked alternatively by μ_2 -fumarato and bis-chelating fumarato bridging ligands. The Ni²⁺ ion is coordinated in a deformed octahedral geometry by one chelating 1,10-phenanthroline ligand, one aqua ligand in a cis position with regard to both Ndonor atoms and by two different fumarato ligands, each residing with its central C=C bond on an inversion centre, occupying the remaining coordination sites in a *fac* fashion. The chains thus formed are linked by $O-H \cdots O$ hydrogen bonds and $\pi - \pi$ interactions between the aromatic rings of the phenanthroline ligands with a shortest ring centroid separation of 3.4787 (10) Å.

Related literature

For Ni²⁺ complexes containing both fum and phen ligands (fum = fumarato, phen = 1,10-phenanthroline), see: Černák *et* al. (2009) for [Ni(fum)(phen)] with a two-dimensional structure and Ma et al. (2003) for $[Ni_2(phen)_4(fum)(H_2O)_2]$ fum-16H2O with an ionic structure containing a dinuclear complex cation. For an Ni²⁺ complex, $[Ni_2(fum)_2(py)_6] \cdot 2py$ (py = pyridine), exhibiting a one-dimensional structure with the same type of fumarato bridging ligands, see: Mori et al. (2004); Marsh et al. (2005).

 $\gamma = 89.655 \ (5)^{\circ}$

Z = 2

V = 766.89 (8) Å³

Mo $K\alpha$ radiation

 $0.46 \times 0.27 \times 0.12 \ \mathrm{mm}$

12619 measured reflections

3173 independent reflections

2972 reflections with $I > 2\sigma(I)$

 $\mu = 1.29 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.022$

Experimental

Crystal data

[Ni(C₄H₂O₄)(C₁₂H₈N₂)(H₂O)] $M_r = 370.99$ Triclinic, $P\overline{1}$ a = 7.8998 (4) Å b = 9.8238(5) Å c = 11.3815 (8) Å $\alpha = 68.677 \ (6)^{\circ}$ $\beta = 70.141 \ (6)^{\circ}$

Data collection

```
Oxford Diffraction Xcalibur
  Sapphire2 diffractometer
Absorption correction: analytical
  [Clark & Reid (1995) in CrysAlis
  PRO (Oxford Diffraction, 2009)]
  T_{\min} = 0.658, T_{\max} = 0.866
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	217 parameters
$wR(F^2) = 0.057$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
3173 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1O1\cdots O5$ $O1-H2O1\cdots O2^{i}$	0.85 0.85	1.78 1.93	2.6085 (15) 2.7820 (15)	163 177
$O1 - H2O1 \cdots O2^{i}$	0.85	1.93	2.7820 (15)	177

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: SHELXL97.

Financial support by the Slovak Ministry of Education (VEGA project No. 1/0089/09) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2574).

References

- Černák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, **28**, 2893–2898.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Crystal Impact (2009). DIAMOND, Crystal Impact, D-53002 Bonn, Germany.
- Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900-m902.

Marsh, R. E. (2005). Acta Cryst. B61, 359.

- Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). *Microporous Mesoporous Mater.* 73, 31–46.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m92-m93 [doi:10.1107/S1600536811054614]

The chain structure of $[Ni(C_4H_2O_4)(C_{12}H_8N_2)(H_2O)]_n$ with different types of fumarate bridging

Anna Uhrinová, Juraj Kuchár and Juraj Černák

S1. Comment

Within our broader study on low-dimensional compounds of Ni(II) in the aqueous-alcoholic system Ni(II)-fum-phen (fum = fumarato, phen = 1,10-phenanthroline) using solvothermal conditions, we have isolated the title compound $[Ni(fum)(H_2O)(phen)]$ (I) in the form of few light-green crystals accompanying the major dark-green crystalline product [Ni(fum)(phen)] (II) (Černák et al., 2009). Such dark-green crystals were only formed if the reaction mixture was cooled from 373 K down to room temperature during 8 h. When the cooling time was elongated to 20 h, some light-green crystals of (I) likewise appeared.

The crystal structure of (I) is built up of zigzag chains exhibiting the backbone composition $[-Ni-fum-Ni-fum-]_n$ propagating parallel to the [001] direction. Within the chain the Ni²⁺ ions are linked alternatively by μ_2 -fumarato and bischelating fumarato bridging ligands (Fig. 1, Fig. 2). The same type of chains is observed in $[Ni_2(fum)_2(py)_6]$ 2py (Mori et al., 2004; Marsh et al., 2005). On the other hand, the dark-green [Ni(fum)(phen)] exhibits a two-dimensional crystal structure built up of dimers of crystallographically non-equivalent Ni²⁺ ions linked by two different types of bridging fumarato ligands (Černák et al., 2009).

The Ni²⁺ central atom in (I) is octahedrally coordinated in a deformed NiN₂O₃O donor set by one chelating phen ligand, one aqua ligand placed in cis-position with regard to both donor nitrogen atoms of the phen ligand, and three coordination sites are occupied by oxygen atoms originating from two chemically different fum ligands, one coordinating through one O-donor atom, and the second one coordinating in a chelating fashion (Fig. 2). The presence of an additional aqua ligand in the coordination sphere of the Ni(II) atom lowers the number of free coordination sites available for polymerization from four in (II) to three in (I). Consequently, a crystal structure with lower dimensionality is realised.

The mean value of the Ni–N bond lengths (2.07 (2) Å) is close to that observed in $[Ni_2(phen)_4(fum)(H_2O)_2]$ fum 16H₂O (2.096 (1) Å) (Ma et al., 2003). In (I) two crystallographically independent fum²⁻ ligands in the asymmetric unit reside on an inversion centre. The chelating fum ligand coordinates in an unsymmetrical fashion and the corresponding Ni—O bonds are longer with respect to the Ni—O bond of the monodentately coordinating fum ligand (Table 2). A similar situation as to the Ni–O bond lengths was observed in $[Ni_2(fum)_2(py)_6]$ 2py (Mori et al., 2004). The Ni—O bond length of the aqua ligand exhibits an usual value (Ma et al., 2003).

Both hydrogen atoms of the aqua ligand are involved in rather strong hydrogen bonds of the O—H···O type (Fig. 3, Table 3). The H1O1 atom forms an intermolecular hydrogen bond with the not coordinating O5 atom from the carboxylate group. On the other hand, the H2O1 atom participates in an intermolecular hydrogen bond with the O2 atom (symmetry code 2 - x, 1 - y, -z) linking neighbouring chains; due to symmetry operators (centre of symmetry) the chains are linked with a pair of such hydrogen bond forming a ring arrangement $R_2^2(8)$. Moreover, the chains interact also through $\pi - \pi$ interactions between the aromatic rings of the phen ligands (Fig. 3). The distances between the centres of gravity, Cgi of the aromatic rings, are: 3.7942 (11) Å for Cg1--Cg1^{iv} (Cg1 is the centre of gravity of the aromatic ring formed by atoms N1, C10, C9, C3, C2, C1) and 3.4787 (10) Å for Cg2--Cg2^v (Cg2 is the centre of gravity of the aromatic ring formed by atoms N2, C8, C7, C6, C11, C12). Similar $\pi - \pi$ interactions were also observed in the structure of the dark-green [Ni(fum)(phen)] (Černák et al., 2009).

S2. Experimental

A Parr reaction vessel (total volume 20 cm³) was filled with 6 cm³ of aqueous-ethanolic solution (1:1) containing 238 mg (1 mmol) of NiCl₂·6H₂O, 116 mg (1 mmol) of fumaric acid and 396 mg (2 mmol) of 1,10-phenantroline. Finally, 112 mg (2 mmol) of solid KOH was added. The closed reaction vessel was heated by uniform heating rate to 373 K during one hour and then was left at this temperature for 80 h. The reaction vessel was then uniformly cooled to room temperature during 20 h. The product consisted of dark-green crystals of [Ni(fum)(phen)] (main product) and few light-green crystals of [Ni(fum)(H₂O)(phen)]. The mixture of crystals was separated from the mother liquor by filtration and dried at laboratory temperature. The light-green crystals were picked up and used for X-ray study.

S3. Refinement

The hydrogen atoms from the water molecule were located in a difference map, but their positions were constrained by geometric parameters to values of 0.850 Å for the O—H bond. The isotropic displacement parameters of the hydrogen atoms were tied to those of the parent oxygen atoms with $U_{iso}(H) = 1.5$ Ueq(O). The hydrogen atoms of the phenantroline ligand and fumarato(2-) ligand were positioned geometrically with C—H = 0.950 Å and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2$ Ueq(C).

Figure 1

Coordination environment around the Ni²⁺ ion in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: i) 1 - x, 1 - y, -z; ii) 1 - x, 1 - y, 1 - z.]

Figure 2

View of the hydrogen bonding system in (I) linking neighbouring chains. Colour code Ni: green, O: red, N: blue, H: white spheres. Hydrogen atoms of the fumarato ligands are omitted as well as the phen ligands but their N donor atoms for clarity.

Figure 3

View of the π -- π interactions between the phen ligands in (I). [Symmetry codes: iv) 2 - x, -y, 1 - z; v) 2 - x, -y, -z.]

catena-poly[[aqua(1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II)]- μ -fumarato- $\kappa^2 O:O'$ - [aqua(1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II)]- μ -fumarato- $\kappa^4 O, O':O'', O'''$]

Crystal data	
$[Ni(C_4H_2O_4)(C_{12}H_8N_2)(H_2O)]$	$\gamma = 89.655 \ (5)^{\circ}$
$M_r = 370.99$	V = 766.89 (8) Å ³
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 380
a = 7.8998 (4) Å	$D_{\rm x} = 1.607 {\rm ~Mg} {\rm ~m}^{-3}$
b = 9.8238 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.3815 (8) Å	Cell parameters from 9394 reflections
$\alpha = 68.677 \ (6)^{\circ}$	$\theta = 3.3 - 29.4^{\circ}$
$\beta = 70.141 \ (6)^{\circ}$	$\mu = 1.29 \text{ mm}^{-1}$

T = 173 KPrism, light-green

Data collection

Duiu contection	
Oxford Diffraction Xcalibur Sapphire2 diffractometer	$T_{\min} = 0.658, T_{\max} = 0.866$ 12619 measured reflections
Radiation source: Enhance (Mo) X-ray Source	3173 independent reflections
Graphite monochromator	2972 reflections with $I > 2\sigma(I)$
Detector resolution: 8.3438 pixels mm ⁻¹	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: analytical	$h = -9 \rightarrow 9$
[Clark & Reid (1995) in CrysAlis PRO (Oxford	$k = -12 \rightarrow 12$
Diffraction, 2009)]	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.057$	neighbouring sites
S = 1.04	H-atom parameters constrained
3173 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 0.3218P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.33$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

 $0.46 \times 0.27 \times 0.12 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.83574 (2)	0.255869 (19)	0.208342 (18)	0.02046 (7)	
01	1.05052 (14)	0.37310 (12)	0.20856 (11)	0.0254 (2)	
H1O1	0.9946	0.4226	0.2539	0.038*	
H2O1	1.1060	0.4310	0.1268	0.038*	
02	0.77961 (14)	0.43278 (11)	0.05893 (11)	0.0246 (2)	
03	0.60066 (15)	0.22129 (11)	0.15882 (11)	0.0256 (2)	
04	0.65578 (15)	0.30773 (12)	0.35633 (11)	0.0297 (2)	
05	0.82308 (16)	0.48624 (13)	0.36300 (12)	0.0351 (3)	
N1	0.85113 (17)	0.05252 (14)	0.34101 (12)	0.0240 (3)	
N2	1.02443 (17)	0.18287 (13)	0.07328 (12)	0.0215 (3)	
C1	0.7599 (2)	-0.01127 (18)	0.47314 (16)	0.0311 (4)	
H1	0.6707	0.0385	0.5153	0.037*	
C2	0.7899 (3)	-0.1492 (2)	0.55307 (17)	0.0373 (4)	
H2	0.7221	-0.1916	0.6476	0.045*	

C3	0.9174 (3)	-0.22201 (19)	0.49376 (18)	0.0370 (4)
Н3	0.9389	-0.3155	0.5469	0.044*
C4	1.1536 (3)	-0.22521 (19)	0.28194 (19)	0.0375 (4)
H4	1.1810	-0.3187	0.3300	0.045*
C5	1.2444 (2)	-0.15787 (19)	0.14727 (19)	0.0351 (4)
Н5	1.3352	-0.2046	0.1026	0.042*
C6	1.2939 (2)	0.05748 (19)	-0.07064 (18)	0.0321 (4)
H6	1.3850	0.0156	-0.1209	0.039*
C7	1.2463 (2)	0.19111 (18)	-0.13455 (16)	0.0311 (4)
H7	1.3051	0.2431	-0.2294	0.037*
C8	1.1105 (2)	0.25035 (17)	-0.05917 (15)	0.0263 (3)
H8	1.0786	0.3429	-0.1048	0.032*
C9	1.0168 (2)	-0.15825 (17)	0.35373 (17)	0.0291 (3)
C10	0.9774 (2)	-0.01967 (16)	0.28145 (15)	0.0228 (3)
C11	1.2066 (2)	-0.01704 (17)	0.07015 (17)	0.0271 (3)
C12	1.0727 (2)	0.05085 (16)	0.13778 (15)	0.0221 (3)
C13	0.6336 (2)	0.35570 (16)	0.08395 (14)	0.0219 (3)
C14	0.4973 (2)	0.42762 (17)	0.02642 (16)	0.0249 (3)
H14	0.4064	0.3645	0.0340	0.030*
C15	0.6762 (2)	0.41233 (16)	0.39247 (15)	0.0247 (3)
C16	0.5037 (2)	0.44635 (18)	0.47800 (16)	0.0280 (3)
H16	0.4000	0.3893	0.4987	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01891 (11)	0.02183 (11)	0.01896 (10)	0.00744 (7)	-0.00459 (8)	-0.00816 (8)
01	0.0204 (6)	0.0307 (6)	0.0219 (5)	0.0058 (4)	-0.0051 (4)	-0.0091 (4)
O2	0.0189 (6)	0.0254 (5)	0.0260 (5)	0.0056 (4)	-0.0082 (5)	-0.0062 (4)
03	0.0252 (6)	0.0218 (5)	0.0281 (6)	0.0065 (4)	-0.0082 (5)	-0.0093 (4)
O4	0.0258 (6)	0.0322 (6)	0.0296 (6)	0.0048 (5)	-0.0008 (5)	-0.0186 (5)
05	0.0254 (6)	0.0413 (7)	0.0394 (7)	0.0038 (5)	-0.0029 (5)	-0.0247 (6)
N1	0.0222 (7)	0.0256 (6)	0.0207 (6)	0.0043 (5)	-0.0059 (5)	-0.0068 (5)
N2	0.0209 (7)	0.0216 (6)	0.0208 (6)	0.0059 (5)	-0.0059 (5)	-0.0082 (5)
C1	0.0282 (9)	0.0358 (9)	0.0236 (8)	0.0030 (7)	-0.0054 (7)	-0.0088 (7)
C2	0.0402 (11)	0.0378 (9)	0.0226 (8)	-0.0031 (8)	-0.0091 (8)	-0.0011 (7)
C3	0.0461 (11)	0.0285 (8)	0.0326 (9)	0.0039 (8)	-0.0212 (9)	-0.0012 (7)
C4	0.0444 (11)	0.0270 (8)	0.0482 (11)	0.0179 (8)	-0.0262 (9)	-0.0139 (8)
C5	0.0329 (10)	0.0330 (9)	0.0480 (10)	0.0185 (7)	-0.0175 (8)	-0.0226 (8)
C6	0.0255 (9)	0.0365 (9)	0.0368 (9)	0.0070 (7)	-0.0043 (7)	-0.0233 (8)
C7	0.0297 (9)	0.0340 (9)	0.0235 (8)	0.0004 (7)	-0.0006 (7)	-0.0126 (7)
C8	0.0288 (9)	0.0247 (7)	0.0224 (7)	0.0040 (6)	-0.0069 (7)	-0.0079 (6)
C9	0.0323 (9)	0.0249 (7)	0.0327 (8)	0.0061 (7)	-0.0182 (7)	-0.0078 (7)
C10	0.0219 (8)	0.0222 (7)	0.0249 (7)	0.0043 (6)	-0.0104 (6)	-0.0080 (6)
C11	0.0233 (8)	0.0280 (8)	0.0348 (8)	0.0077 (6)	-0.0108 (7)	-0.0172 (7)
C12	0.0201 (8)	0.0226 (7)	0.0257 (7)	0.0049 (6)	-0.0090 (6)	-0.0111 (6)
C13	0.0202 (8)	0.0246 (7)	0.0204 (7)	0.0080 (6)	-0.0047 (6)	-0.0106 (6)
C14	0.0177 (8)	0.0291 (7)	0.0283 (8)	0.0061 (6)	-0.0079 (6)	-0.0119 (6)

supporting information

C15	0.0263 (8)	0.0258 (7)	0.0193 (7)	0.0080 (6)	-0.0049 (6)	-0.0090 (6)
C16	0.0223 (8)	0.0322 (8)	0.0260 (8)	0.0036 (6)	-0.0016 (7)	-0.0140 (7)

Geometric parameters (Å, °)

Nil—O4	2.0263 (10)	С3—Н3	0.9500
Ni1—N1	2.0527 (12)	C4—C5	1.350 (3)
Ni1-01	2.0576 (11)	C4—C9	1.432 (2)
Ni1—N2	2.0811 (12)	C4—H4	0.9500
Ni1-02	2.1124 (10)	C5—C11	1.436 (2)
Ni1-03	2.1771 (11)	С5—Н5	0.9500
01—H101	0.8500	C6—C7	1.371 (2)
01—H2O1	0.8500	C6—C11	1.408 (2)
O2—C13	1.2711 (18)	С6—Н6	0.9500
O3—C13	1.2540 (18)	C7—C8	1.398 (2)
O4—C15	1.2671 (18)	С7—Н7	0.9500
O5—C15	1.2470 (19)	C8—H8	0.9500
N1-C1	1.326 (2)	C9—C10	1.408 (2)
N1-C10	1.3563 (19)	C10-C12	1.438 (2)
N2	1.3253 (19)	C11—C12	1.403 (2)
N2-C12	1.3631 (19)	C13—C14	1.490 (2)
C1—C2	1.402 (2)	$C14-C14^{i}$	1.322 (3)
C1—H1	0.9500	C14—H14	0.9127
C2—C3	1.365 (3)	C15—C16	1.498 (2)
С2—Н2	0.9500	C16—C16 ⁱⁱ	1.315 (3)
С3—С9	1.407 (2)	C16—H16	0.9056
O4—Ni1—N1	93.22 (5)	C5—C4—C9	121.22 (15)
04—Ni1—01	92.07 (4)	C5—C4—H4	119.4
N1—Ni1—O1	98.29 (5)	C9—C4—H4	119.4
O4—Ni1—N2	173.69 (5)	C4—C5—C11	121.40 (15)
N1—Ni1—N2	80.59 (5)	C4—C5—H5	119.3
O1—Ni1—N2	87.68 (5)	С11—С5—Н5	119.3
O4—Ni1—O2	90.64 (4)	C7—C6—C11	119.38 (14)
N1—Ni1—O2	165.34 (5)	С7—С6—Н6	120.3
01—Ni1—O2	95.70 (4)	С11—С6—Н6	120.3
N2—Ni1—O2	95.66 (4)	C6—C7—C8	119.52 (15)
04—Ni1—O3	84.64 (4)	С6—С7—Н7	120.2
N1—Ni1—O3	104.64 (5)	С8—С7—Н7	120.2
01—Ni1—O3	156.97 (4)	N2C8C7	122.79 (14)
N2—Ni1—O3	98.02 (4)	N2—C8—H8	118.6
02—Ni1—O3	61.64 (4)	С7—С8—Н8	118.6
O4—Ni1—C13	84.46 (5)	C3—C9—C10	116.94 (15)
N1—Ni1—C13	135.31 (5)	C3—C9—C4	124.20 (15)
01—Ni1—C13	126.36 (5)	C10—C9—C4	118.86 (15)
N2—Ni1—C13	100.76 (5)	N1-C10-C9	122.99 (14)
O2-Ni1-C13	31.19 (4)	N1-C10-C12	117.23 (13)
O3—Ni1—C13	30.68 (4)	C9—C10—C12	119.78 (14)

Ni1—01—H2O1 106.0 C12—C11—C5 1 H101—01—H2O1 109.3 C6—C11—C5 1 C13—O2—Ni1 89.42 (8) N2—C12—C11 1 C13—O3—Ni1 86.97 (9) N2—C12—C10 1	
H1O1—O1—H2O1 109.3 C6—C11—C5 1 C13—O2—Ni1 89.42 (8) N2—C12—C11 1 C13—O3—Ni1 86.97 (9) N2—C12—C10 1	18.60 (15)
C13—O2—Ni1 89.42 (8) N2—C12—C11 1 C13—O3—Ni1 86.97 (9) N2—C12—C10 1 S15—O4—Ni1 127.02 (10) G11—G12—G10 1	24.15 (15)
C13—O3—Ni1 86.97 (9) N2—C12—C10 1	23.04 (14)
	16.83 (13)
C15-O4-N1 $127.93(10)$ $C11-C12-C10$ 1	20.13 (13)
C1-N1-C10 $118.30(13)$ $O3-C13-O2$ 1	21.07 (13)
C1-N1-N1 128 64 (11) $O3-C13-C14$ 1	19.63 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.28 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.35(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(9, 39, (7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.01 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.62(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.02 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.2
$C_2 = C_1 = 111$ 110.7 $C_1 = C_1 = -1114$ 1 $C_2 = C_2 = C_1$ 110.22 (16) $C_2 = C_1 = C_1 = -1114$ 1	15.2
$C_3 = C_2 = C_1$ 119.33 (10) $C_3 = C_1 = C_1 = C_1$	20.03(14)
$C_3 = C_2 = H_2$ 120.3 $C_3 = C_1 $	19.20 (13)
C1 = C2 = H2 120.5 $C1 = C16$ 1	14.08(14)
$C_2 = C_3 = C_9$ 119.83 (15) $C_1 = C_1 = C_1 = C_1$	23.7 (2)
C2-C3-H3 120.1 C16-H16 1	19.5
С9—С3—Н3 120.1 С15—С16—Н16 1	16.8
-78 + 18 (8) $-72 + 62 + 62 + 62 + 62 + 62 + 62 + 62 +$	70.82 (16)
$V_1 = V_1 = V_2 = C_1 = C_1 = C_1 = C_2 $	$-170\ 00\ (17)$
$N_1 - N_1 - 02 - C_{15}$ 27.1 (2) C3 - C4 - C9 - C5 - C4 - C9 -	(1/9.90(17))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0(2)
$N_2 - N_1 - 0_2 - 0_1_3$ $101.40(8)$ $C_1 - N_1 - 0_1 - 0_9$ -	-0.0(2)
03-N11-02-C13 $5.38(8)$ $N11-N1-C10-C9$ 1	77.36 (12)
04-N11-03-C13 88.17 (9) $C1-N1-C10-C12$ 1	79.14 (14)
N1-N1-O3-C13 -179.90 (8) $N1-N1-C10-C12$ -	-2.93 (16)
$01 - N_1 I - 03 - C_{13}$ 5.53 (15) $C_3 - C_9 - C_{10} - N_1$ 0	0.4 (2)
N2-Ni1-O3-C13 -97.59 (9) C4-C9-C10-N1 -	-179.51 (14)
O2-Ni1-O3-C13 -5.46 (8) $C3-C9-C10-C12$ -	-179.28 (14)
N1—Ni1—O4—C15 117.90 (13) C4—C9—C10—C12 0	0.8 (2)
O1—Ni1—O4—C15 19.47 (13) C7—C6—C11—C12 0	0.4 (2)
O2—Ni1—O4—C15 -76.25 (13) C7—C6—C11—C5 1	79.43 (15)
O3—Ni1—O4—C15 -137.69 (13) C4—C5—C11—C12 0	0.3 (2)
C13—Ni1—O4—C15 –106.87 (13) C4—C5—C11—C6 –	-178.73 (17)
O4—Ni1—N1—C1 3.18 (14) C8—N2—C12—C11 -	-0.9 (2)
O1_Ni1_N1_C1 95 75 (14) Ni1_N2_C12_C11 -	-175.67 (11)
	79.84 (13)
N2-Ni1-N1-C1 -178.02 (14) C8-N2-C12-C10 1	5.10 (16)
N1N1C1 $35.75 (14)$ N1N2C12C11N2Ni1N1C1 $-178.02 (14)$ C8N2C12C101O2Ni1N1C1 $-101.8 (2)$ Ni1N2C12C105	(4(2))
N1N1C1 $)$ <	(2)
N1N1C1 $)$ <	-178.66 (14)
N1N1C1 $)$ <	-178.66 (14) 79.62 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.66 (14) 79.62 (14) 0.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.66 (14) 79.62 (14) 0.6 (2) -1.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.66 (14) 79.62 (14) 0.6 (2) -1.5 (2) 78.18 (13)

$\begin{array}{c} N1 - Ni1 - N2 - C8 \\ O1 - Ni1 - N2 - C8 \\ O2 - Ni1 - N2 - C8 \\ O3 - Ni1 - N2 - C8 \\ C13 - Ni1 - N2 - C8 \\ N1 - Ni1 - N2 - C12 \\ O1 - Ni1 - N2 - C12 \\ O2 - Ni1 - N2 - C12 \\ O3 - Ni1 - N2 - C12 \\ C13 - Ni1 - N2 - C12 \\ C10 - N1 - C1 - C2 \\ Ni1 - N1 - C1 - C2 \\ N1 - C1 - C2 - C3 \\ C1 - C2 - C3 - C9 \\ C9 - C4 - C5 - C11 \\ C11 - C6 - C7 - C8 \\ C12 - N2 - C8 - C7 \\ Ni1 - N2 - C8 - C7 \\ C6 - C7 - C8 - N2 \\ \end{array}$	$\begin{array}{c} -80.24 \ (14) \\ 15.26 \ (14) \\ 77.35 \ (14) \\ 46.36 \ (14) \\ -5.08 \ (10) \\ 93.73 \ (10) \\ -170.78 \ (10) \\ -108.69 \ (10) \\ -139.67 \ (10) \\ 0.4 \ (2) \\ -177.15 \ (12) \\ -0.1 \ (3) \\ 0.0 \ (3) \\ -0.6 \ (3) \\ -0.7 \ (2) \\ 0.6 \ (2) \\ 174.28 \ (11) \\ 0.2 \ (2) \end{array}$	$\begin{array}{l} \text{Ni1}-\text{O3}-\text{C13}-\text{C14} \\ \text{Ni1}-\text{O2}-\text{C13}-\text{O3} \\ \text{Ni1}-\text{O2}-\text{C13}-\text{C14} \\ \text{O4}-\text{Ni1}-\text{C13}-\text{O3} \\ \text{N1}-\text{Ni1}-\text{C13}-\text{O3} \\ \text{O1}-\text{Ni1}-\text{C13}-\text{O3} \\ \text{O2}-\text{Ni1}-\text{C13}-\text{O3} \\ \text{O2}-\text{Ni1}-\text{C13}-\text{O3} \\ \text{O2}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{N1}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{N1}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O1}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O2}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O3}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O3}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O3}-\text{Ni1}-\text{C13}-\text{O2} \\ \text{O3}-\text{C14}-\text{C14}^{\text{i}} \\ \text{O2}-\text{C13}-\text{C14}-\text{C14}^{\text{i}} \\ \text{Ni1}-\text{O4}-\text{C15}-\text{O5} \\ \text{Ni1}-\text{O4}-\text{C15}-\text{C16} \\ \text{O5}-\text{C15}-\text{C16}-\text{C16}^{\text{ii}} \\ \end{array}$	-168.84 (12) -9.63 (14) 168.57 (12) -88.83 (8) 0.14 (11) -177.32 (7) 87.59 (9) 170.69 (13) 100.48 (8) -170.55 (8) 11.99 (10) -83.10 (8) -170.69 (13) 164.10 (18) -14.1 (3) -15.4 (2) 164.36 (10) 1.9 (3)
C6-C7-C8-N2	-0.1(2)	05C15C16C16 ⁱⁱ	1.9 (3)
C2-C3-C9-C10		04C15C16C16 ⁱⁱ	-177.9 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
01—H1 <i>0</i> 1…O5	0.85	1.78	2.6085 (15)	163
O1—H2 <i>O</i> 1···O2 ⁱⁱⁱ	0.85	1.93	2.7820 (15)	177

Symmetry code: (iii) -x+2, -y+1, -z.