organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o550-o551

Ethyl 4-cyano-7-nitro-1,2,3,3a,4,5-hexa­hydro­pyrrolo­[1,2-a]quinoline-4-carboxyl­ate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Cote d'Ivoire, and bLaboratoire de Chimie Organique Structurale, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Cote d'Ivoire
*Correspondence e-mail: bibilamayayabisseyou@yahoo.fr

(Received 24 January 2012; accepted 26 January 2012; online 31 January 2012)

In the title compound, C16H17N3O4, the six-membered N-containing ring adopts a half-chair conformation. One C atom of the five-membered ring is disordered over two sites, with occupancy factors of ca 0.67 and 0.33. The major pyrroline component adopts a half-chair conformation. Inter­molecular C—H⋯O hydrogen bonds forming centrosymmetric dimers are observed in the crystal.

Related literature

For the biological activity of tricyclic quinoline derivatives, see: Dalla Via et al. (2008[Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). J. Med. Chem. 43, 429-434.]); Gasparotto et al. (2006[Gasparotto, V., Castalinolo, I., Chiarelotto, G., Pezzi, V., Montanaro, D., Brun, P., Palu, G., Viola, G. & Ferlin, M. G. (2006). J. Med. Chem. 49, 1910-1915.]); Ferlin et al. (2000[Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2000). Bioorg. Med. Chem. 8, 1415-1422.]). For the crystal structure of an inter­mediate compound, see: Yapo, Konan et al. (2010[Yapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, o1735.]). For a closely related crystal structure, see: Yapo, Abou et al. (2010[Yapo, Y. M., Abou, B. C., Adjou, A., Kakou-Yao, R. & Tenon, J. A. (2010). Acta Cryst. E66, o2497.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O4

  • Mr = 315.33

  • Triclinic, [P \overline 1]

  • a = 7.2292 (2) Å

  • b = 9.1589 (3) Å

  • c = 11.8243 (5) Å

  • α = 79.332 (1)°

  • β = 82.609 (1)°

  • γ = 80.429 (2)°

  • V = 754.79 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 9677 measured reflections

  • 3879 independent reflections

  • 2498 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.247

  • S = 1.17

  • 3879 reflections

  • 214 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.97 2.48 3.432 (3) 167
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a tricyclic quinoline derivative obtained from an intermediate compound, (E)-ethyl 2-cyano-3-[5-nitro-2-(pyrrolidin-1-yl)phenyl]acrylate, whose molecular and crystal structures were recently determined by X-ray diffraction (Yapo, Konan et al., 2010). Tricyclic quinoline derivatives have received considerable attention because of their important therapeutic properties (Dalla Via et al., 2008; Gasparotto et al., 2006; Ferlin et al., 2000).

In this paper the crystal structure of the title compound is reported from single-crystal X-ray diffraction data collected at 223 K. The molecular structure of the title compound is shown in Fig. 1. The structure is composed of two principal parts: the quinoline ring system and the pyrroline ring.

The quinoline ring system has geometrical parameters which are consistent with those reported recently (Yapo, Abou et al., 2010). The six-membered N-containing ring adopts a half-chair conformation, with puckering parameters Q = 0.512 (2)Å, θ = 129.6 (2)°, ϕ = 283.6 (3)° (Cremer & Pople, 1975). The pyrroline ring exhibits disorder of atom C2 over two sites, with occupancy factors of 0.672 (5) and 0.328 (5). The major component of the five-membered ring adopts a half-chair conformation with puckering parameters Q(2) = 0.335 (3) Å and ϕ = 54.5 (5)° .

In the crystal structure, molecules form centrosymmetric dimeric units via C—H···O hydrogen bonds, characterized by an R22(10) (Bernstein et al., 1995) motif (Fig. 2). These centrosymmetric R22(10) dimers are arranged in the crystal structure as shown in Fig. 3.

Related literature top

For the biological activity of tricyclic quinoline derivatives, see: Dalla Via et al. (2008); Gasparotto et al. (2006); Ferlin et al. (2000). For the crystal structure of an intermediate compound, see: Yapo, Konan et al. (2010). For a closely related crystal structure, see: Yapo, Abou et al. (2010). For ring conformation analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

(E)-Ethyl-2-cyano-3-(5-nitro-2-pyrrolidin-1-yl)phenyl) acrylate (2 g, 6.34 mmol) was dissolved in anhydrous dimethylformamide (10 ml). The mixture was heated to reflux over a period of 24 h. After cooling to ambient temperature, the reaction mixture was poured into water (20 ml). After extraction by ethyl acetate (2x50ml), the organic layers were dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by chromatography on silica gel. Elution solvent: hexane/ethyl acetate (90/10). Yellow single crystals of the title compound were obtained with a yield of 48% (m.p.: 397–398 K; Rf: 0.65, hexane/ethyl acetate: 90/10).

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with Csp2—H = 0.93 Å, C(methine)—H = 0.98 Å, C(methylene)—H = 0.97 Å, C(methyl)—H = 0.96 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. C2A and C2B are the major and minor components, respectively, of the disordered atom.
[Figure 2] Fig. 2. Part of the crystal packing showing a centrosymmetric R22(10) dimer unit. For the sake of clarity, the unit-cell outline and H atoms not involved in hydrogen bonds have been omitted. Dashed lines indicate hydrogen bonds. Atom O3a belongs to the molecule at symmetry position (-x+2,-y,-z+1).
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate hydrogen bonds.
Ethyl 4-cyano-7-nitro-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4- carboxylate top
Crystal data top
C16H17N3O4Z = 2
Mr = 315.33F(000) = 332
Triclinic, P1Dx = 1.387 Mg m3
a = 7.2292 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1589 (3) ÅCell parameters from 9677 reflections
c = 11.8243 (5) Åθ = 1.8–29.2°
α = 79.332 (1)°µ = 0.10 mm1
β = 82.609 (1)°T = 223 K
γ = 80.429 (2)°Prism, yellow
V = 754.79 (5) Å30.25 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2498 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 29.2°, θmin = 1.8°
ϕ and ω scansh = 09
9677 measured reflectionsk = 1112
3879 independent reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.247 w = 1/[σ2(Fo2) + (0.1394P)2 + 0.0744P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
3879 reflectionsΔρmax = 0.75 e Å3
214 parametersΔρmin = 0.61 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.38 (4)
Crystal data top
C16H17N3O4γ = 80.429 (2)°
Mr = 315.33V = 754.79 (5) Å3
Triclinic, P1Z = 2
a = 7.2292 (2) ÅMo Kα radiation
b = 9.1589 (3) ŵ = 0.10 mm1
c = 11.8243 (5) ÅT = 223 K
α = 79.332 (1)°0.25 × 0.20 × 0.15 mm
β = 82.609 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2498 reflections with I > 2σ(I)
9677 measured reflectionsRint = 0.049
3879 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08312 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.17Δρmax = 0.75 e Å3
3879 reflectionsΔρmin = 0.61 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2977 (3)0.58327 (19)0.70594 (15)0.0351 (5)
C10.2805 (3)0.4588 (3)0.80197 (18)0.0412 (6)
H1A0.39810.39080.80920.049*
H1B0.18080.40320.79470.049*
C2A0.2298 (6)0.5486 (4)0.9047 (3)0.0419 (8)0.672 (5)
H2A10.09530.58270.91460.050*0.672 (5)
H2A20.26760.48650.97610.050*0.672 (5)
C2B0.3452 (12)0.5011 (9)0.9026 (6)0.0419 (8)0.328 (5)
H2B10.47350.45370.91340.050*0.328 (5)
H2B20.26420.47190.97240.050*0.328 (5)
C50.2756 (3)0.5797 (2)0.59352 (17)0.0308 (5)
C80.2277 (3)0.5789 (3)0.36579 (18)0.0367 (5)
O30.0755 (2)0.8596 (2)0.64410 (15)0.0488 (5)
C70.2484 (3)0.7115 (3)0.39876 (18)0.0365 (5)
H70.24510.79940.34460.044*
C100.2506 (3)0.4473 (2)0.55766 (19)0.0352 (5)
H100.25040.35910.61120.042*
C40.3558 (3)0.7113 (2)0.74133 (18)0.0348 (5)
H40.49040.71050.71590.042*
C110.2999 (3)0.8593 (2)0.54725 (18)0.0369 (5)
H11A0.22160.94200.50430.044*
H11B0.43020.87520.52730.044*
O40.0134 (2)0.8945 (2)0.81674 (14)0.0480 (5)
O10.1913 (3)0.4596 (2)0.21612 (16)0.0595 (6)
C60.2741 (3)0.7141 (2)0.51212 (17)0.0326 (5)
N20.2021 (3)0.5793 (3)0.24618 (17)0.0465 (5)
O20.1926 (4)0.6986 (2)0.17861 (16)0.0722 (7)
C120.2475 (3)0.8588 (2)0.67809 (17)0.0332 (5)
C90.2265 (3)0.4462 (3)0.4446 (2)0.0375 (5)
H90.20970.35820.42120.045*
C140.0328 (3)0.8707 (2)0.70870 (18)0.0344 (5)
N30.3742 (3)1.0864 (2)0.72921 (19)0.0522 (6)
C130.3147 (3)0.9878 (3)0.70977 (19)0.0389 (5)
C30.3340 (4)0.6763 (3)0.8734 (2)0.0485 (6)
H3A0.45660.65120.90280.058*
H3B0.26510.76230.90530.058*
C150.2116 (4)0.8961 (3)0.8615 (2)0.0541 (7)
H15A0.25590.80640.84950.065*
H15B0.28800.98310.82190.065*
C160.2252 (5)0.9021 (4)0.9866 (3)0.0725 (9)
H16A0.13790.82201.02320.109*
H16B0.35110.89141.02070.109*
H16C0.19530.99680.99690.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0446 (11)0.0312 (9)0.0282 (9)0.0060 (7)0.0043 (7)0.0011 (7)
C10.0448 (13)0.0414 (12)0.0345 (12)0.0088 (10)0.0089 (9)0.0067 (9)
C2A0.0446 (19)0.0502 (19)0.0286 (14)0.0076 (16)0.0043 (15)0.0000 (13)
C2B0.0446 (19)0.0502 (19)0.0286 (14)0.0076 (16)0.0043 (15)0.0000 (13)
C50.0278 (10)0.0339 (10)0.0285 (10)0.0011 (8)0.0013 (8)0.0037 (8)
C80.0303 (11)0.0500 (13)0.0301 (11)0.0029 (9)0.0021 (8)0.0110 (9)
O30.0427 (10)0.0580 (11)0.0475 (10)0.0053 (8)0.0129 (8)0.0095 (8)
C70.0353 (11)0.0414 (11)0.0299 (11)0.0042 (9)0.0003 (8)0.0014 (8)
C100.0342 (11)0.0329 (10)0.0366 (11)0.0028 (8)0.0001 (9)0.0054 (8)
C40.0345 (11)0.0350 (11)0.0345 (11)0.0019 (8)0.0063 (8)0.0058 (8)
C110.0454 (12)0.0344 (11)0.0299 (11)0.0104 (9)0.0007 (9)0.0006 (8)
O40.0382 (9)0.0667 (11)0.0412 (9)0.0079 (8)0.0005 (7)0.0168 (8)
O10.0681 (13)0.0687 (13)0.0492 (11)0.0066 (10)0.0115 (9)0.0284 (9)
C60.0319 (10)0.0356 (11)0.0294 (10)0.0054 (8)0.0015 (8)0.0041 (8)
N20.0432 (11)0.0633 (14)0.0342 (10)0.0040 (10)0.0055 (8)0.0141 (9)
O20.1117 (19)0.0696 (13)0.0376 (11)0.0166 (12)0.0238 (11)0.0003 (9)
C120.0382 (11)0.0316 (10)0.0304 (10)0.0066 (8)0.0027 (8)0.0059 (8)
C90.0331 (11)0.0392 (11)0.0420 (12)0.0027 (9)0.0024 (9)0.0150 (9)
C140.0383 (11)0.0293 (10)0.0346 (11)0.0034 (8)0.0051 (9)0.0033 (8)
N30.0609 (14)0.0443 (12)0.0561 (14)0.0191 (10)0.0045 (10)0.0106 (10)
C130.0408 (12)0.0392 (12)0.0365 (12)0.0057 (9)0.0052 (9)0.0049 (9)
C30.0611 (16)0.0466 (13)0.0353 (12)0.0052 (11)0.0143 (11)0.0053 (10)
C150.0392 (14)0.0663 (17)0.0566 (16)0.0072 (12)0.0027 (11)0.0148 (13)
C160.0599 (19)0.098 (2)0.0578 (18)0.0145 (17)0.0146 (14)0.0208 (17)
Geometric parameters (Å, º) top
N1—C51.366 (3)C4—C31.528 (3)
N1—C41.455 (3)C4—C121.556 (3)
N1—C11.461 (3)C4—H40.9800
C1—C2B1.470 (7)C11—C61.510 (3)
C1—C2A1.562 (4)C11—C121.544 (3)
C1—H1A0.9700C11—H11A0.9700
C1—H1B0.9700C11—H11B0.9700
C2A—C31.461 (4)O4—C141.327 (3)
C2A—H2A10.9700O4—C151.461 (3)
C2A—H2A20.9700O1—N21.231 (3)
C2B—C31.568 (8)N2—O21.226 (3)
C2B—H2B10.9700C12—C131.475 (3)
C2B—H2B20.9700C12—C141.538 (3)
C5—C101.402 (3)C9—H90.9300
C5—C61.415 (3)N3—C131.133 (3)
C8—C71.379 (3)C3—H3A0.9700
C8—C91.389 (3)C3—H3B0.9700
C8—N21.449 (3)C15—C161.480 (4)
O3—C141.190 (3)C15—H15A0.9700
C7—C61.382 (3)C15—H15B0.9700
C7—H70.9300C16—H16A0.9600
C10—C91.373 (3)C16—H16B0.9600
C10—H100.9300C16—H16C0.9600
C5—N1—C4122.46 (16)C6—C11—H11B109.2
C5—N1—C1125.17 (17)C12—C11—H11B109.2
C4—N1—C1112.23 (16)H11A—C11—H11B107.9
N1—C1—C2B107.2 (3)C14—O4—C15116.71 (18)
N1—C1—C2A99.7 (2)C7—C6—C5119.03 (19)
C2B—C1—C2A33.3 (3)C7—C6—C11119.84 (18)
N1—C1—H1A111.8C5—C6—C11121.13 (18)
C2B—C1—H1A79.1O2—N2—O1122.4 (2)
C2A—C1—H1A111.8O2—N2—C8118.9 (2)
N1—C1—H1B111.8O1—N2—C8118.7 (2)
C2B—C1—H1B132.2C13—C12—C14109.33 (18)
C2A—C1—H1B111.8C13—C12—C11108.76 (17)
H1A—C1—H1B109.6C14—C12—C11110.85 (17)
C3—C2A—C1105.5 (2)C13—C12—C4108.75 (17)
C3—C2A—H2A1110.6C14—C12—C4112.53 (16)
C1—C2A—H2A1110.6C11—C12—C4106.51 (17)
C3—C2A—H2A2110.6C10—C9—C8118.7 (2)
C1—C2A—H2A2110.6C10—C9—H9120.6
H2A1—C2A—H2A2108.8C8—C9—H9120.6
C1—C2B—C3104.8 (5)O3—C14—O4125.2 (2)
C1—C2B—H2B1110.8O3—C14—C12124.4 (2)
C3—C2B—H2B1110.8O4—C14—C12110.42 (17)
C1—C2B—H2B2110.8N3—C13—C12176.2 (3)
C3—C2B—H2B2110.8C2A—C3—C4106.2 (2)
H2B1—C2B—H2B2108.9C2A—C3—C2B33.3 (3)
N1—C5—C10121.69 (18)C4—C3—C2B104.6 (3)
N1—C5—C6118.85 (18)C2A—C3—H3A110.5
C10—C5—C6119.45 (18)C4—C3—H3A110.5
C7—C8—C9121.76 (19)C2B—C3—H3A80.7
C7—C8—N2118.9 (2)C2A—C3—H3B110.5
C9—C8—N2119.3 (2)C4—C3—H3B110.5
C8—C7—C6120.1 (2)C2B—C3—H3B136.8
C8—C7—H7119.9H3A—C3—H3B108.7
C6—C7—H7119.9O4—C15—C16107.2 (2)
C9—C10—C5120.9 (2)O4—C15—H15A110.3
C9—C10—H10119.5C16—C15—H15A110.3
C5—C10—H10119.5O4—C15—H15B110.3
N1—C4—C3104.31 (17)C16—C15—H15B110.3
N1—C4—C12109.20 (16)H15A—C15—H15B108.5
C3—C4—C12119.69 (19)C15—C16—H16A109.5
N1—C4—H4107.7C15—C16—H16B109.5
C3—C4—H4107.7H16A—C16—H16B109.5
C12—C4—H4107.7C15—C16—H16C109.5
C6—C11—C12112.16 (16)H16A—C16—H16C109.5
C6—C11—H11A109.2H16B—C16—H16C109.5
C12—C11—H11A109.2
C5—N1—C1—C2B170.8 (4)C6—C11—C12—C13167.79 (18)
C4—N1—C1—C2B4.9 (4)C6—C11—C12—C1472.0 (2)
C5—N1—C1—C2A155.8 (2)C6—C11—C12—C450.7 (2)
C4—N1—C1—C2A28.5 (3)N1—C4—C12—C13177.03 (18)
N1—C1—C2A—C334.5 (3)C3—C4—C12—C1363.0 (3)
C2B—C1—C2A—C372.1 (6)N1—C4—C12—C1461.7 (2)
N1—C1—C2B—C319.3 (6)C3—C4—C12—C1458.3 (3)
C2A—C1—C2B—C362.0 (5)N1—C4—C12—C1160.0 (2)
C4—N1—C5—C10169.18 (19)C3—C4—C12—C11179.95 (19)
C1—N1—C5—C106.1 (3)C5—C10—C9—C80.1 (3)
C4—N1—C5—C612.2 (3)C7—C8—C9—C101.4 (3)
C1—N1—C5—C6172.52 (19)N2—C8—C9—C10179.92 (18)
C9—C8—C7—C61.8 (3)C15—O4—C14—O34.6 (3)
N2—C8—C7—C6179.62 (19)C15—O4—C14—C12175.16 (19)
N1—C5—C10—C9179.25 (19)C13—C12—C14—O3130.1 (2)
C6—C5—C10—C90.6 (3)C11—C12—C14—O310.2 (3)
C5—N1—C4—C3172.03 (19)C4—C12—C14—O3108.9 (2)
C1—N1—C4—C312.1 (2)C13—C12—C14—O450.1 (2)
C5—N1—C4—C1243.0 (3)C11—C12—C14—O4169.98 (16)
C1—N1—C4—C12141.17 (18)C4—C12—C14—O470.9 (2)
C8—C7—C6—C51.0 (3)C14—C12—C13—N3151 (4)
C8—C7—C6—C11179.0 (2)C11—C12—C13—N329 (4)
N1—C5—C6—C7178.85 (19)C4—C12—C13—N386 (4)
C10—C5—C6—C70.2 (3)C1—C2A—C3—C428.8 (3)
N1—C5—C6—C111.1 (3)C1—C2A—C3—C2B63.2 (5)
C10—C5—C6—C11179.78 (19)N1—C4—C3—C2A11.4 (3)
C12—C11—C6—C7157.10 (19)C12—C4—C3—C2A111.1 (3)
C12—C11—C6—C522.9 (3)N1—C4—C3—C2B23.2 (4)
C7—C8—N2—O22.7 (3)C12—C4—C3—C2B145.6 (4)
C9—C8—N2—O2175.9 (2)C1—C2B—C3—C2A71.0 (6)
C7—C8—N2—O1177.1 (2)C1—C2B—C3—C426.4 (6)
C9—C8—N2—O14.3 (3)C14—O4—C15—C16172.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.972.483.432 (3)167
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O4
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.2292 (2), 9.1589 (3), 11.8243 (5)
α, β, γ (°)79.332 (1), 82.609 (1), 80.429 (2)
V3)754.79 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9677, 3879, 2498
Rint0.049
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.247, 1.17
No. of reflections3879
No. of parameters214
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.61

Computer programs: COLLECT (Nonius, 2001), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.972.483.432 (3)166.6
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank Michel Giorgi and the Spectropole Service, Faculty of Sciences and Techniques, Saint Jérome University, France, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). J. Med. Chem. 43, 429–434.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2000). Bioorg. Med. Chem. 8, 1415–1422.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGasparotto, V., Castalinolo, I., Chiarelotto, G., Pezzi, V., Montanaro, D., Brun, P., Palu, G., Viola, G. & Ferlin, M. G. (2006). J. Med. Chem. 49, 1910–1915.  CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYapo, Y. M., Abou, B. C., Adjou, A., Kakou-Yao, R. & Tenon, J. A. (2010). Acta Cryst. E66, o2497.  CrossRef IUCr Journals Google Scholar
First citationYapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, o1735.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o550-o551
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds