organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o253-o254

2-(4-Fluoro­phen­yl)-2H-chromen-4(3H)-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 12 December 2011; accepted 19 December 2011; online 7 January 2012)

In the crystal structure of the title compound, C15H11FO2, mol­ecules form inversion dimers through pairs of weak C—H⋯O hydrogen bonds. Dimers oriented in parallel, linked by C—H⋯π contacts, are arranged in columns along the b axis. The fluoro­phenyl ring and the benzene ring of the 2H-chromen-4(3H)-one unit are inclined to one another by 70.41 (16)°. They are respectively parallel in a given column or almost perpendicular [oriented at an angle of 87.8 (1)°] in neighbouring (inversely oriented) columns, forming a herringbone pattern.

Related literature

For general background to flavanones, see: Grayer & Veitch (2006[Grayer, R. J. & Veitch, N. C. (2006). Flavonoids: Chemistry, Biochemistry and Applications, edited by Ø. M. Andersen & K. R. Markham, pp. 917-1002. Boca Raton: CRC Press/Taylor & Francis Group.]); Nijveldt et al. (2001[Nijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. M. (2001). Am. J. Clin. Nutr. 74, 48-425.]). For related structures, see: Białońska et al. (2007a[Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007a). Acta Cryst. E63, o430-o431.],b[Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007b). Acta Cryst. E63, o432-o433.]). For inter­molecular inter­actions, see: Novoa et al. (2006[Novoa, J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishia, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Aitmambetov & Kubzheterova (2002[Aitmambetov, A. & Kubzheterova, A. (2002). Russ. J. Bioorg. Chem. 28, 165-166.]); Chen et al. (2011[Chen, P.-Y., Wang, T.-P., Chiang, M. Y., Huang, K.-S., Tzeng, C.-C., Chen, Y.-L. & Wang, E.-C. (2011). Tetrahedron, 67, 4155-4160.]); Wera et al. (2010[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, o3122.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO2

  • Mr = 242.24

  • Monoclinic, P 21 /n

  • a = 11.7896 (13) Å

  • b = 5.2309 (8) Å

  • c = 19.740 (3) Å

  • β = 91.630 (11)°

  • V = 1216.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.6 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.919, Tmax = 0.953

  • 7630 measured reflections

  • 2163 independent reflections

  • 1080 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.160

  • S = 1.01

  • 2163 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O11i 0.98 2.48 3.280 (4) 139
C3—H3ACg1ii 0.97 2.78 3.695 (3) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flavanones [derivatives of 2-phenyl-2H-chromen-4(3H)-one] appear in numerous natural systems where they fulfil a beneficial role due to their antioxidant features (Nijveldt et al., 2001; Grayer & Veitch, 2006). Here we present the structure of 2-(4-fluorophenyl)-2H-chromen-4(3H)-one, a flavanone that was obtained during the synthesis of a related flavonol (Wera et al., 2010).

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-2H-chromen-4(3H)-one (flavanone) moiety are typical of this group of compounds (Białońska et al., 2007a,b). With respective average deviations from planarity of 0.0103 (2)° and 0.0040 (2)°, the Cg1 and Cg2 benzene ring systems are oriented at a dihedral angle of 70.4 (1)° (in the case of 6-hydroxy-2-phenyl-2H-chromen-4(3H)-one and 2-(4-hydroxyphenyl)-2H-chromen-4(3H)-one this angle is equal to 74.4 (1)° (Białońska et al., 2007a) and 74.8 (1)° (Białońska et al., 2007b) respectively). The crystal structure data indicate that the 2H-chromen-4(3H)-one moiety is non-planar [average deviation from planarity: 0.1857 (2) mainly within the O1/C2–C4/C9/C10/O11 fragment, since the average deviation from planarity of the C5–C10 ring is 0.0103 (2)]. It is mainly the C2 atom that deviates from planarity, since the average deviation from planarity of the O1/C3–C10/C11 fragment is equal to 0.0368 (2).

In the crystal structure, the inversely oriented molecules form dimers through a pair of intermolecular C–H···O (Novoa et al., 2006) interactions (Table 1, Fig. 2). Dimers oriented in parallel, linked by C–H···π (Takahashi et al., 2001) contacts (Table 1, Fig. 2), are arranged in columns along the b axis (Fig. 3) that are dispersively stabilized in the crystal lattice. The adjacent Cg1 and Cg2 benzene rings are parallel in a given column or oriented at an angle of 87.8 (1)° in the two neighbouring, inversely oriented, columns, forming a herringbone pattern.

Related literature top

For general background to flavanones, see: Grayer & Veitch (2006); Nijveldt et al. (2001). For related structures, see: Białońska et al. (2007a,b). For intermolecular interactions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Aitmambetov & Kubzheterova (2002); Chen et al. (2011); Wera et al. (2010).

Experimental top

The title compound was synthesized following a procedure described elsewhere (Aitmambetov & Kubzheterova, 2002; Chen et al., 2011). Briefly, 3-(4-fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was synthesized first by the condensation (with removal of H2O) of 1-(2-hydroxyphenyl)ethanone with 4-fluorobenzaldehyde in methanol/50% aqueous NaOH (1/1 v/v), then precipitated by neutralizing the reaction mixture with aqueous HCl, and finally separated by filtration (Wera et al., 2010). The product thus obtained was subjected to cyclization in triethylamine/ethanol solution (by refluxing for 2–3 h). The reactant mixture was poured into cold HCl-acidified water which caused the precipitation of 2-(4-fluorophenyl)-2H-chromen-4(3H)-one. The filtered product was purified chromatographically (Silica Gel, chloroform/methanol, 20/1 v/v), and colorless crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. = 351–353 K; lit. 352–353 K (Chen et al., 2011)).

Refinement top

The H atoms of the C–H bonds were positioned geometrically, with C–H = 0.93 Å, 0.97Å and 0.98Å for the aromatic, methylene and methine H atoms respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H atoms and x = 1.5 for the methylene and methine H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y, –z; (ii) x, y + 1, z.]
[Figure 3] Fig. 3. Columns in the crystal structure, viewed along the b axis. The C–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted.
2-(4-Fluorophenyl)-2H-chromen-4(3H)-one top
Crystal data top
C15H11FO2F(000) = 504
Mr = 242.24Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2163 reflections
a = 11.7896 (13) Åθ = 3.5–25.1°
b = 5.2309 (8) ŵ = 0.10 mm1
c = 19.740 (3) ÅT = 295 K
β = 91.630 (11)°Needle, colorless
V = 1216.9 (3) Å30.6 × 0.05 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2163 independent reflections
Radiation source: Enhance (Mo) X-ray Source1080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.5°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 56
Tmin = 0.919, Tmax = 0.953l = 1823
7630 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2163 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (3)
Crystal data top
C15H11FO2V = 1216.9 (3) Å3
Mr = 242.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7896 (13) ŵ = 0.10 mm1
b = 5.2309 (8) ÅT = 295 K
c = 19.740 (3) Å0.6 × 0.05 × 0.05 mm
β = 91.630 (11)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1080 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.953Rint = 0.080
7630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2163 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81543 (15)0.0853 (4)0.03640 (10)0.0584 (6)
C20.7340 (2)0.1581 (6)0.01647 (15)0.0559 (8)
H20.70410.00200.03790.067*
C30.6364 (2)0.3003 (6)0.01423 (16)0.0604 (9)
H3A0.66430.45830.03430.072*
H3B0.58110.34390.02120.072*
C40.5800 (3)0.1446 (6)0.06728 (16)0.0580 (8)
C50.6150 (3)0.1982 (6)0.15344 (17)0.0691 (10)
H50.53870.19070.16410.083*
C60.6851 (4)0.3619 (7)0.18806 (18)0.0788 (11)
H60.65630.46880.22100.095*
C70.7999 (3)0.3687 (7)0.17398 (18)0.0777 (11)
H70.84820.47760.19830.093*
C80.8424 (3)0.2147 (6)0.12410 (16)0.0638 (9)
H80.91940.21770.11500.077*
C90.6553 (3)0.0420 (5)0.10249 (15)0.0541 (8)
C100.7694 (3)0.0553 (5)0.08754 (15)0.0533 (8)
O110.48046 (18)0.1698 (4)0.08060 (13)0.0784 (8)
C120.7935 (2)0.3105 (6)0.06892 (16)0.0545 (8)
C130.7726 (3)0.2659 (7)0.13661 (19)0.0813 (11)
H130.72430.13330.14980.098*
C140.8221 (4)0.4146 (8)0.1857 (2)0.0939 (12)
H140.80770.38340.23150.113*
C150.8924 (3)0.6075 (8)0.1651 (2)0.0766 (11)
C160.9173 (3)0.6583 (6)0.0993 (2)0.0720 (10)
H160.96660.79010.08690.086*
C170.8669 (2)0.5075 (6)0.05082 (17)0.0635 (9)
H170.88260.53940.00520.076*
F180.94093 (19)0.7554 (5)0.21355 (12)0.1139 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (11)0.0636 (13)0.0569 (14)0.0006 (10)0.0003 (10)0.0084 (11)
C20.0576 (18)0.0598 (18)0.050 (2)0.0043 (15)0.0027 (15)0.0036 (15)
C30.0594 (19)0.0567 (18)0.065 (2)0.0072 (15)0.0073 (16)0.0005 (16)
C40.0558 (19)0.0593 (19)0.059 (2)0.0006 (16)0.0078 (16)0.0073 (16)
C50.079 (2)0.069 (2)0.060 (2)0.0009 (19)0.0113 (18)0.0054 (19)
C60.110 (3)0.073 (2)0.054 (2)0.004 (2)0.016 (2)0.0065 (18)
C70.101 (3)0.072 (2)0.060 (3)0.011 (2)0.001 (2)0.0089 (19)
C80.074 (2)0.062 (2)0.055 (2)0.0056 (17)0.0002 (17)0.0027 (17)
C90.065 (2)0.0502 (17)0.047 (2)0.0017 (15)0.0066 (15)0.0043 (15)
C100.064 (2)0.0491 (17)0.0470 (19)0.0003 (15)0.0034 (15)0.0043 (15)
O110.0585 (14)0.0875 (17)0.0899 (19)0.0026 (12)0.0133 (12)0.0015 (14)
C120.0569 (18)0.0570 (18)0.050 (2)0.0061 (15)0.0045 (15)0.0055 (16)
C130.102 (3)0.082 (3)0.059 (3)0.010 (2)0.006 (2)0.001 (2)
C140.124 (3)0.107 (3)0.051 (3)0.010 (3)0.001 (2)0.011 (2)
C150.078 (2)0.088 (3)0.065 (3)0.009 (2)0.018 (2)0.027 (2)
C160.068 (2)0.073 (2)0.077 (3)0.0060 (18)0.018 (2)0.005 (2)
C170.064 (2)0.072 (2)0.055 (2)0.0004 (18)0.0090 (16)0.0048 (18)
F180.1241 (18)0.1279 (19)0.0916 (18)0.0035 (15)0.0346 (14)0.0416 (15)
Geometric parameters (Å, º) top
O1—C101.373 (3)C7—H70.9300
O1—C21.449 (3)C8—C101.386 (4)
C2—C121.497 (4)C8—H80.9300
C2—C31.512 (4)C9—C101.388 (4)
C2—H20.9800C12—C131.372 (4)
C3—C41.497 (4)C12—C171.386 (4)
C3—H3A0.9700C13—C141.384 (5)
C3—H3B0.9700C13—H130.9300
C4—O111.217 (3)C14—C151.361 (5)
C4—C91.479 (4)C14—H140.9300
C5—C61.360 (5)C15—C161.350 (5)
C5—C91.390 (4)C15—F181.367 (4)
C5—H50.9300C16—C171.387 (4)
C6—C71.389 (5)C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.378 (4)
C10—O1—C2113.7 (2)C7—C8—H8120.3
O1—C2—C12108.9 (2)C10—C8—H8120.3
O1—C2—C3109.7 (2)C10—C9—C5118.5 (3)
C12—C2—C3113.1 (2)C10—C9—C4120.4 (3)
O1—C2—H2108.3C5—C9—C4121.0 (3)
C12—C2—H2108.3O1—C10—C8116.9 (3)
C3—C2—H2108.3O1—C10—C9122.4 (3)
C4—C3—C2111.8 (2)C8—C10—C9120.7 (3)
C4—C3—H3A109.3C13—C12—C17118.1 (3)
C2—C3—H3A109.3C13—C12—C2120.6 (3)
C4—C3—H3B109.3C17—C12—C2121.3 (3)
C2—C3—H3B109.3C12—C13—C14121.2 (4)
H3A—C3—H3B107.9C12—C13—H13119.4
O11—C4—C9122.6 (3)C14—C13—H13119.4
O11—C4—C3122.8 (3)C15—C14—C13118.2 (4)
C9—C4—C3114.5 (3)C15—C14—H14120.9
C6—C5—C9121.2 (3)C13—C14—H14120.9
C6—C5—H5119.4C16—C15—C14123.2 (3)
C9—C5—H5119.4C16—C15—F18118.5 (4)
C5—C6—C7119.8 (3)C14—C15—F18118.3 (4)
C5—C6—H6120.1C15—C16—C17117.8 (3)
C7—C6—H6120.1C15—C16—H16121.1
C8—C7—C6120.3 (3)C17—C16—H16121.1
C8—C7—H7119.8C12—C17—C16121.4 (3)
C6—C7—H7119.8C12—C17—H17119.3
C7—C8—C10119.4 (3)C16—C17—H17119.3
C10—O1—C2—C12179.8 (2)C5—C9—C10—O1177.6 (3)
C10—O1—C2—C355.5 (3)C4—C9—C10—O15.6 (4)
O1—C2—C3—C457.2 (3)C5—C9—C10—C82.1 (4)
C12—C2—C3—C4179.0 (3)C4—C9—C10—C8174.7 (3)
C2—C3—C4—O11152.0 (3)O1—C2—C12—C13136.3 (3)
C2—C3—C4—C928.3 (4)C3—C2—C12—C13101.4 (3)
C9—C5—C6—C72.0 (5)O1—C2—C12—C1746.7 (3)
C5—C6—C7—C81.5 (5)C3—C2—C12—C1775.5 (4)
C6—C7—C8—C100.8 (5)C17—C12—C13—C140.7 (5)
C6—C5—C9—C100.2 (5)C2—C12—C13—C14176.4 (3)
C6—C5—C9—C4177.0 (3)C12—C13—C14—C150.1 (6)
O11—C4—C9—C10177.1 (3)C13—C14—C15—C160.9 (6)
C3—C4—C9—C102.6 (4)C13—C14—C15—F18179.7 (3)
O11—C4—C9—C50.3 (5)C14—C15—C16—C171.0 (5)
C3—C4—C9—C5179.4 (3)F18—C15—C16—C17179.6 (3)
C2—O1—C10—C8155.0 (3)C13—C12—C17—C160.6 (5)
C2—O1—C10—C924.7 (4)C2—C12—C17—C16176.4 (3)
C7—C8—C10—O1177.1 (3)C15—C16—C17—C120.2 (5)
C7—C8—C10—C92.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O11i0.982.483.280 (4)139
C3—H3A···Cg1ii0.972.783.695 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11FO2
Mr242.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.7896 (13), 5.2309 (8), 19.740 (3)
β (°) 91.630 (11)
V3)1216.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.919, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
7630, 2163, 1080
Rint0.080
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.160, 1.01
No. of reflections2163
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O11i0.982.483.280 (4)139
C3—H3A···Cg1ii0.972.783.695 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–1). MW acknowledges financial support from the European Social Fund within the project "Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdańsk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the authors: the sponsor cannot be held responsible for any use which may be made of the information contained therein.

References

First citationAitmambetov, A. & Kubzheterova, A. (2002). Russ. J. Bioorg. Chem. 28, 165–166.  Web of Science CrossRef CAS Google Scholar
First citationBiałońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007a). Acta Cryst. E63, o430–o431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBiałońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007b). Acta Cryst. E63, o432–o433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, P.-Y., Wang, T.-P., Chiang, M. Y., Huang, K.-S., Tzeng, C.-C., Chen, Y.-L. & Wang, E.-C. (2011). Tetrahedron, 67, 4155–4160.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrayer, R. J. & Veitch, N. C. (2006). Flavonoids: Chemistry, Biochemistry and Applications, edited by Ø. M. Andersen & K. R. Markham, pp. 917–1002. Boca Raton: CRC Press/Taylor & Francis Group.  Google Scholar
First citationNijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. M. (2001). Am. J. Clin. Nutr. 74, 48–425.  Google Scholar
First citationNovoa, J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishia, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationWera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, o3122.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o253-o254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds