organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(1E)-(4-Fluoro­phen­yl)methyl­­idene]thio­phene-2-carbohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title compound, C12H9FN2OS, the thienyl ring is disordered over two positions, with the S atom of the major component [occupancy = 87.08 (16)°] oriented towards the ortho-H atom of the benzene ring. The mol­ecule is nearly planar, the dihedral angle between the thio­phene and benzene rings being 13.0 (2)° in the major component. The azomethine C=N double bond in the mol­ecule is of an E configuration. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the 4-chloro and 4-bromo derivatives, see: Jiang (2010a[Jiang, J.-H. (2010a). Acta Cryst. E66, o922.],b[Jiang, J.-H. (2010b). Acta Cryst. E66, o923.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9FN2OS

  • Mr = 248.27

  • Monoclinic, P 21 /c

  • a = 13.3076 (11) Å

  • b = 5.6015 (4) Å

  • c = 15.3062 (12) Å

  • β = 104.166 (9)°

  • V = 1106.27 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.906, Tmax = 0.986

  • 4609 measured reflections

  • 2532 independent reflections

  • 1917 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.06

  • 2532 reflections

  • 171 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.99 (3) 2.893 (2) 176 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Thienoylhydrazide forms a large number of Schiff base derivatives with substituted benzaldehydes; among those whose crystal structures have been reported are the 4-chloro and 4-bromo derivatives (Jiang, 2010a, 2010b). However, the 4-fluoro analog (Scheme I) is disordered in respect of the thienyl ring (Fig. 1). The azomethine double-bond in the approximately planar C12H9FN2OS molecule is of an E configuration. The thienyl ring is disordered over two positions, with the S atom of the major component (87.1 (2) %) oriented towards the ortho-H atom of the benzene ring. Two molecules are linked across a center-of-inversion by an N–H···O hydrogen bond to generate a dimer (Table 1).

Related literature top

For the 4-chloro and 4-bromo derivatives, see: Jiang (2010a,b).

Experimental top

2-Thienoylhydrazide (1.42 g, 0.01 mol) and 4-fluorobenzaldehyde (1.24 g, 0.01 mol) dissolved in ethanol (8 ml) was heated for 1 h. The product was collected and recystallized from ethanol to yield the Schiff base in 90% yield, m.p. 447–448 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was refined freely refined.

The thienyl ring is disordered over two positions in respect of four of the five atoms, with major component being 87.1 (2) %. Pairs of C–C and C–S bond distances were restrained to within 0.0 Å of each other. The temperature factors of C3' was set to those of S1 (as were these pairs: C2' to C1, C1' to C2 and S1' to C3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H9FN2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
N'-[(1E)-(4-Fluorophenyl)methylidene]thiophene-2-carbohydrazide top
Crystal data top
C12H9FN2OSF(000) = 512
Mr = 248.27Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1715 reflections
a = 13.3076 (11) Åθ = 2.7–27.5°
b = 5.6015 (4) ŵ = 0.29 mm1
c = 15.3062 (12) ÅT = 100 K
β = 104.166 (9)°Prism, colorless
V = 1106.27 (15) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2532 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1917 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 1317
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 74
Tmin = 0.906, Tmax = 0.986l = 1911
4609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.30 e Å3
5 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H9FN2OSV = 1106.27 (15) Å3
Mr = 248.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3076 (11) ŵ = 0.29 mm1
b = 5.6015 (4) ÅT = 100 K
c = 15.3062 (12) Å0.35 × 0.15 × 0.05 mm
β = 104.166 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2532 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1917 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.986Rint = 0.037
4609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
2532 reflectionsΔρmin = 0.28 e Å3
171 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.72252 (5)0.67192 (12)0.49050 (4)0.01785 (19)0.8708 (16)
S1'0.5631 (6)0.5848 (19)0.3160 (5)0.0218 (7)0.1292 (16)
F11.06801 (9)0.4889 (2)0.93514 (8)0.0291 (3)
O10.49118 (10)0.2092 (2)0.40405 (9)0.0203 (3)
N10.60280 (12)0.2114 (3)0.54014 (11)0.0181 (4)
N20.68783 (12)0.3050 (3)0.59944 (11)0.0164 (4)
C10.7215 (3)0.8617 (10)0.4025 (4)0.0181 (7)0.8708 (16)
H1A0.76750.99280.40550.022*0.8708 (16)
C20.6467 (8)0.8018 (16)0.3276 (5)0.0203 (9)0.8708 (16)
H20.63470.88630.27220.024*0.8708 (16)
C30.5900 (3)0.6034 (9)0.3415 (3)0.0218 (7)0.8708 (16)
H30.53540.53810.29580.026*0.8708 (16)
C1'0.642 (6)0.827 (12)0.318 (4)0.0203 (9)0.13
H1'0.64420.92980.26910.024*0.1292 (16)
C2'0.702 (3)0.842 (8)0.404 (3)0.0181 (7)0.13
H2'0.75000.96900.42050.022*0.1292 (16)
C3'0.6923 (14)0.671 (3)0.4673 (13)0.01785 (19)0.13
H3'0.73020.66790.52860.021*0.1292 (16)
C40.61940 (14)0.5099 (3)0.42645 (12)0.0166 (4)
C50.56736 (14)0.3024 (3)0.45575 (13)0.0165 (4)
C60.71912 (15)0.1929 (3)0.67428 (13)0.0169 (4)
H60.68360.05340.68540.020*
C70.80912 (14)0.2777 (3)0.74281 (12)0.0162 (4)
C80.84780 (15)0.1384 (3)0.81905 (13)0.0188 (4)
H80.81390.00680.82640.023*
C90.93487 (16)0.2074 (3)0.88442 (13)0.0227 (5)
H90.96130.11120.93600.027*
C100.98170 (15)0.4193 (4)0.87216 (13)0.0199 (4)
C110.94486 (15)0.5653 (3)0.79870 (13)0.0181 (4)
H110.97830.71210.79260.022*
C120.85802 (14)0.4930 (3)0.73393 (12)0.0166 (4)
H120.83160.59130.68290.020*
H10.5728 (17)0.078 (4)0.5544 (15)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0196 (4)0.0175 (3)0.0169 (4)0.0051 (3)0.0053 (2)0.0012 (2)
S1'0.010 (2)0.0290 (13)0.025 (2)0.0022 (16)0.0011 (14)0.0011 (18)
F10.0230 (6)0.0378 (7)0.0222 (7)0.0021 (6)0.0027 (5)0.0023 (6)
O10.0173 (7)0.0236 (7)0.0197 (7)0.0040 (6)0.0037 (6)0.0009 (6)
N10.0172 (8)0.0194 (9)0.0174 (9)0.0056 (7)0.0035 (7)0.0015 (7)
N20.0146 (8)0.0165 (8)0.0185 (9)0.0005 (7)0.0048 (7)0.0025 (6)
C10.015 (2)0.0156 (15)0.0255 (11)0.0038 (15)0.0096 (15)0.0012 (9)
C20.0175 (15)0.022 (3)0.023 (2)0.004 (2)0.0069 (15)0.0076 (13)
C30.010 (2)0.0290 (13)0.025 (2)0.0022 (16)0.0011 (14)0.0011 (18)
C1'0.0175 (15)0.022 (3)0.023 (2)0.004 (2)0.0069 (15)0.0076 (13)
C2'0.015 (2)0.0156 (15)0.0255 (11)0.0038 (15)0.0096 (15)0.0012 (9)
C3'0.0196 (4)0.0175 (3)0.0169 (4)0.0051 (3)0.0053 (2)0.0012 (2)
C40.0148 (9)0.0168 (9)0.0192 (10)0.0011 (8)0.0058 (8)0.0020 (8)
C50.0151 (9)0.0186 (10)0.0169 (10)0.0012 (8)0.0062 (8)0.0030 (8)
C60.0176 (10)0.0153 (9)0.0195 (10)0.0010 (8)0.0077 (8)0.0006 (8)
C70.0181 (10)0.0168 (9)0.0159 (9)0.0017 (8)0.0084 (8)0.0005 (7)
C80.0225 (10)0.0151 (9)0.0204 (10)0.0016 (8)0.0082 (9)0.0013 (8)
C90.0280 (11)0.0218 (10)0.0174 (10)0.0058 (9)0.0036 (9)0.0040 (8)
C100.0161 (9)0.0268 (11)0.0162 (10)0.0004 (9)0.0030 (8)0.0043 (8)
C110.0200 (10)0.0166 (10)0.0195 (10)0.0013 (8)0.0083 (9)0.0014 (8)
C120.0177 (10)0.0177 (9)0.0151 (9)0.0034 (8)0.0055 (8)0.0013 (8)
Geometric parameters (Å, º) top
S1—C11.714 (4)C2'—C3'1.389 (11)
S1—C41.7346 (19)C2'—H2'0.9500
S1'—C1'1.713 (11)C3'—C41.361 (10)
S1'—C41.725 (6)C3'—H3'0.9500
F1—C101.363 (2)C4—C51.478 (3)
O1—C51.238 (2)C6—C71.465 (3)
N1—C51.361 (2)C6—H60.9500
N1—N21.370 (2)C7—C121.392 (3)
N1—H10.90 (2)C7—C81.394 (3)
N2—C61.283 (2)C8—C91.388 (3)
C1—C21.363 (3)C8—H80.9500
C1—H1A0.9500C9—C101.374 (3)
C2—C31.388 (5)C9—H90.9500
C2—H20.9500C10—C111.380 (3)
C3—C41.367 (4)C11—C121.386 (3)
C3—H30.9500C11—H110.9500
C1'—C2'1.362 (10)C12—H120.9500
C1'—H1'0.9500
C1—S1—C491.55 (18)C5—C4—S1'111.4 (3)
C1'—S1'—C493.3 (15)C3—C4—S1109.9 (2)
C5—N1—N2121.58 (17)C5—C4—S1127.20 (14)
C5—N1—H1118.1 (14)O1—C5—N1119.21 (18)
N2—N1—H1120.0 (14)O1—C5—C4120.57 (17)
C6—N2—N1116.04 (16)N1—C5—C4120.22 (17)
C2—C1—S1111.8 (3)N2—C6—C7120.68 (17)
C2—C1—H1A124.1N2—C6—H6119.7
S1—C1—H1A124.1C7—C6—H6119.7
C1—C2—C3112.4 (4)C12—C7—C8118.76 (18)
C1—C2—H2123.8C12—C7—C6122.06 (17)
C3—C2—H2123.8C8—C7—C6119.18 (17)
C4—C3—C2114.3 (3)C9—C8—C7121.31 (18)
C4—C3—H3122.8C9—C8—H8119.3
C2—C3—H3122.8C7—C8—H8119.3
C2'—C1'—S1'106 (3)C10—C9—C8117.96 (18)
C2'—C1'—H1'127.0C10—C9—H9121.0
S1'—C1'—H1'127.0C8—C9—H9121.0
C1'—C2'—C3'120 (4)F1—C10—C9118.83 (17)
C1'—C2'—H2'120.0F1—C10—C11118.46 (17)
C3'—C2'—H2'120.0C9—C10—C11122.72 (18)
C4—C3'—C2'108 (2)C10—C11—C12118.51 (18)
C4—C3'—H3'125.9C10—C11—H11120.7
C2'—C3'—H3'125.9C12—C11—H11120.7
C3'—C4—C5135.8 (9)C11—C12—C7120.73 (17)
C3—C4—C5122.9 (2)C11—C12—H12119.6
C3'—C4—S1'112.3 (9)C7—C12—H12119.6
C5—N1—N2—C6174.53 (16)N2—N1—C5—O1178.84 (15)
C4—S1—C1—C20.7 (8)N2—N1—C5—C41.2 (3)
S1—C1—C2—C30.2 (13)C3'—C4—C5—O1168.9 (14)
C1—C2—C3—C40.5 (13)C3—C4—C5—O12.7 (4)
C4—S1'—C1'—C2'3 (7)S1'—C4—C5—O12.1 (4)
S1'—C1'—C2'—C3'2 (9)S1—C4—C5—O1176.76 (14)
C1'—C2'—C3'—C40 (7)C3'—C4—C5—N111.1 (14)
C2'—C3'—C4—C31 (3)C3—C4—C5—N1177.3 (3)
C2'—C3'—C4—C5174 (2)S1'—C4—C5—N1177.9 (4)
C2'—C3'—C4—S1'3 (3)S1—C4—C5—N13.2 (3)
C2'—C3'—C4—S1149 (7)N1—N2—C6—C7179.76 (15)
C2—C3—C4—C3'4.5 (13)N2—C6—C7—C126.3 (3)
C2—C3—C4—C5178.5 (7)N2—C6—C7—C8173.20 (17)
C2—C3—C4—S1'176 (3)C12—C7—C8—C91.6 (3)
C2—C3—C4—S11.0 (8)C6—C7—C8—C9177.91 (17)
C1'—S1'—C4—C3'4 (4)C7—C8—C9—C100.5 (3)
C1'—S1'—C4—C35 (5)C8—C9—C10—F1179.27 (16)
C1'—S1'—C4—C5177 (4)C8—C9—C10—C110.9 (3)
C1'—S1'—C4—S12 (4)F1—C10—C11—C12179.03 (15)
C1—S1—C4—C3'30 (5)C9—C10—C11—C121.1 (3)
C1—S1—C4—C31.0 (3)C10—C11—C12—C70.0 (3)
C1—S1—C4—C5178.5 (3)C8—C7—C12—C111.3 (3)
C1—S1—C4—S1'0.3 (5)C6—C7—C12—C11178.15 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.99 (3)2.893 (2)176 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H9FN2OS
Mr248.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.3076 (11), 5.6015 (4), 15.3062 (12)
β (°) 104.166 (9)
V3)1106.27 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.906, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4609, 2532, 1917
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.06
No. of reflections2532
No. of parameters171
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.99 (3)2.893 (2)176 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationJiang, J.-H. (2010a). Acta Cryst. E66, o922.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, J.-H. (2010b). Acta Cryst. E66, o923.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds