organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium bis­­(perchlorate)–18-crown-6 (1/2)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chemcrystal66@yahoo.com.cn

(Received 25 December 2011; accepted 30 December 2011; online 11 January 2012)

In the title compound, C3H12N22+·2ClO4·2C12H24O6, the central C atom of the propane-1,3-diammonium cation is located on a twofold rotation axis and the two terminal –NH3 groups insert into the crown rings through N—H⋯O hydrogen bonding, resulting in the formation of a 1:2 supra­molecular [(C3H12N2)·(C12H24O6)2]+ complex. The perchlorate anion links with the supra­molecular complex via weak C—H⋯O hydrogen bonding.

Related literature

For the properties and structures of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780-12786.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011b). Adv. Mater. 23, 5658-5662.],c[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947-11951.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·2ClO4·2C12H24O6

  • Mr = 803.67

  • Monoclinic, C 2/c

  • a = 22.984 (5) Å

  • b = 9.0055 (18) Å

  • c = 21.620 (4) Å

  • β = 113.59 (3)°

  • V = 4101.0 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 16855 measured reflections

  • 3606 independent reflections

  • 2059 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.248

  • S = 1.07

  • 3606 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 2.10 2.958 (4) 161
N1—H1E⋯O3 0.89 2.08 2.951 (5) 167
N1—H1D⋯O5 0.89 2.12 3.007 (5) 177
C10—H10B⋯O10 0.96 2.55 3.478 (13) 161
C13—H13A⋯O9 0.96 2.58 3.470 (7) 154

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic amino compounds attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al., 2007; Fu & Xiong, 2008; Fu et al., 2008; Fu et al., 2009). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu et al., 2011a; Fu et al., 2011b; Fu et al., 2011c). In this study, we describe the crystal structure of the title compound, bis(18-crown-6)propane-1,3-diammonium perchlorate .

The title compound was composed of cationic [(C3H12N2).(C12H24O6)2]+ and one ClO4- anion (Fig.1). Supramolecular rotators was assembled between protonated propane-1,3-diammonium (H3N-C3H6-NH3)+ and 18-crown-6 by H-bonds. The ammonium moieties of -NH3+ cations were interacted with the O atoms of crown ethers through six N—H···O hydrogen bonds, forming a 1:2 supramolecular rotator-stator structures.

The macrocycle adopts a conformation with approximate D3d symmetry, with all O-C-C-O torsion angles being gauche and alternating in sign, and all C-O-C-C torsion angles being trans. The C-N bonds of cation were almost perpendicular to the mean oxygen planes of crown ethers.

Supramolecular cation structure, [(C3H12N2).(C12H24O6)2]+, was introduced as counter cation to ClO4- anion. Cl has a flattened tetrahedral coordination by four O atoms [range of cis-bond angles = 105.2 (5)-113.7 (3) °; dav(Cl-O) = 1.332 (7)-1.410 (4)Å].

The title compound was stabilized by intermolecular N—H···O hydrogen bonds, the ClO4- anion not participating in the H-bonding interactions. The intermolecular N—H···O H-bonding length are within the usual range of 2.951 (5) to 3.152 (5)Å. (Table 1 and Fig.2).

Related literature top

For the properties and structures of related compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b,c).

Experimental top

The commercial 18-crown-6 (6 mmol), HClO4 (6 mmol) and organic amine (3 mmol) were dissolved in water/EtOH (1:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (405 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 4.2 to 7.5).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with 0.97 Å (C-methylene). The positional parameters of the H atoms (N1) were initially refined freely, subsequently restrained using a distance of N–H = 0.89 (2) Å, and in the final refinements treated in riding motion of their parent nitrogen atom with Uiso(H)=1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the H-bonding interactions. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
Propane-1,3-diaminium bis(perchlorate)–18-crown-6 (1/2) top
Crystal data top
C3H12N22+·2ClO4·2C12H24O6F(000) = 1720
Mr = 803.67Dx = 1.302 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3606 reflections
a = 22.984 (5) Åθ = 3.3–27.5°
b = 9.0055 (18) ŵ = 0.23 mm1
c = 21.620 (4) ÅT = 298 K
β = 113.59 (3)°Block, colorless
V = 4101.0 (17) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.3°
CCD profile fitting scansh = 2727
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.910, Tmax = 1.000l = 2525
16855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1136P)2 + 6.3277P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C3H12N22+·2ClO4·2C12H24O6V = 4101.0 (17) Å3
Mr = 803.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.984 (5) ŵ = 0.23 mm1
b = 9.0055 (18) ÅT = 298 K
c = 21.620 (4) Å0.10 × 0.03 × 0.03 mm
β = 113.59 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2059 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.086
16855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.07Δρmax = 0.65 e Å3
3606 reflectionsΔρmin = 0.42 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07984 (6)0.10040 (17)0.43221 (7)0.0626 (5)
N10.10533 (15)0.4168 (4)0.23756 (18)0.0394 (9)
H1C0.13670.35500.24090.059*
H1D0.11950.48360.27060.059*
H1E0.09150.46280.19780.059*
C140.00000.4263 (7)0.25000.0401 (15)
H14A0.01830.48880.21100.048*
C130.0522 (2)0.3310 (5)0.2433 (3)0.0489 (12)
H13A0.06930.26720.28200.059*
H13B0.03340.26910.20410.059*
O10.19599 (14)0.1670 (4)0.26636 (16)0.0522 (9)
O20.14880 (16)0.2723 (4)0.13018 (17)0.0610 (10)
O60.22044 (16)0.3852 (4)0.37058 (16)0.0600 (10)
O50.15115 (18)0.6523 (4)0.3449 (2)0.0699 (11)
O30.07323 (17)0.5386 (5)0.10111 (19)0.0694 (11)
O40.10201 (18)0.7507 (4)0.2076 (2)0.0748 (12)
C110.2347 (2)0.2291 (6)0.3837 (3)0.0613 (15)
H11A0.19880.17940.38630.074*
H11B0.27010.21740.42630.074*
C120.2501 (2)0.1626 (6)0.3288 (3)0.0593 (14)
H12A0.28460.21540.32460.071*
H12B0.26290.06120.33980.071*
C20.1526 (3)0.1189 (6)0.1466 (3)0.0683 (16)
H2A0.15800.06200.11170.082*
H2B0.11420.08710.15030.082*
C10.2077 (3)0.0951 (6)0.2127 (3)0.0634 (15)
H1A0.21550.00890.22230.076*
H1B0.24490.13810.21020.076*
C90.2026 (3)0.6201 (8)0.4103 (3)0.0796 (19)
H9A0.19560.67180.44550.096*
H9B0.24190.65420.40960.096*
C40.0927 (3)0.4672 (8)0.0535 (3)0.080 (2)
H4A0.13350.50540.05910.096*
H4B0.06310.48880.00840.096*
C30.0976 (3)0.3036 (7)0.0654 (3)0.0751 (18)
H3A0.05810.26730.06480.090*
H3B0.10560.25480.03000.090*
C60.0487 (3)0.7661 (7)0.1465 (4)0.086 (2)
H6A0.03860.86950.13760.104*
H6B0.01270.71650.14880.104*
C50.0641 (3)0.6996 (7)0.0914 (3)0.085 (2)
H5A0.03030.71850.04820.102*
H5B0.10220.74360.09170.102*
C80.1502 (4)0.8053 (7)0.3269 (4)0.087 (2)
H8A0.18820.82900.32060.104*
H8B0.14830.86740.36220.104*
C100.2064 (3)0.4562 (7)0.4218 (3)0.0716 (17)
H10A0.23880.43500.46550.086*
H10B0.16650.42090.42050.086*
C70.0943 (3)0.8322 (6)0.2623 (4)0.083 (2)
H7A0.05710.79670.26730.099*
H7B0.08890.93620.25180.099*
O90.0609 (3)0.0673 (6)0.3637 (2)0.1150 (18)
O80.0368 (2)0.0512 (6)0.4595 (3)0.1106 (18)
O100.0830 (5)0.2559 (8)0.4361 (5)0.231 (5)
O70.1380 (3)0.0480 (16)0.4675 (4)0.257 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0603 (8)0.0785 (10)0.0606 (8)0.0265 (7)0.0363 (7)0.0224 (7)
N10.037 (2)0.037 (2)0.048 (2)0.0041 (16)0.0206 (17)0.0043 (17)
C140.038 (3)0.038 (4)0.049 (4)0.0000.021 (3)0.000
C130.040 (3)0.040 (3)0.071 (3)0.002 (2)0.027 (2)0.001 (2)
O10.0417 (18)0.054 (2)0.060 (2)0.0123 (15)0.0193 (17)0.0100 (17)
O20.058 (2)0.062 (2)0.056 (2)0.0107 (17)0.0150 (18)0.0049 (18)
O60.067 (2)0.070 (2)0.045 (2)0.0079 (18)0.0247 (18)0.0007 (18)
O50.076 (3)0.052 (2)0.091 (3)0.0118 (19)0.044 (2)0.015 (2)
O30.068 (2)0.074 (3)0.055 (2)0.0096 (19)0.0132 (19)0.020 (2)
O40.057 (2)0.059 (2)0.104 (3)0.0210 (19)0.026 (2)0.017 (2)
C110.052 (3)0.065 (4)0.058 (3)0.003 (3)0.014 (3)0.025 (3)
C120.043 (3)0.055 (3)0.070 (4)0.003 (2)0.013 (3)0.020 (3)
C20.074 (4)0.063 (4)0.079 (4)0.008 (3)0.042 (3)0.014 (3)
C10.071 (4)0.046 (3)0.089 (4)0.012 (3)0.049 (3)0.002 (3)
C90.087 (4)0.101 (6)0.056 (4)0.018 (4)0.034 (4)0.025 (3)
C40.064 (4)0.103 (5)0.049 (3)0.027 (4)0.003 (3)0.016 (3)
C30.072 (4)0.095 (5)0.044 (3)0.020 (3)0.009 (3)0.013 (3)
C60.062 (4)0.066 (4)0.125 (6)0.008 (3)0.030 (4)0.041 (4)
C50.059 (4)0.076 (4)0.084 (5)0.011 (3)0.009 (3)0.053 (4)
C80.110 (5)0.052 (4)0.122 (6)0.004 (4)0.071 (5)0.033 (4)
C100.070 (4)0.093 (5)0.054 (3)0.014 (3)0.027 (3)0.005 (3)
C70.085 (4)0.043 (3)0.149 (7)0.018 (3)0.078 (5)0.002 (4)
O90.159 (5)0.123 (4)0.065 (3)0.033 (3)0.045 (3)0.005 (3)
O80.118 (4)0.112 (4)0.146 (4)0.048 (3)0.100 (4)0.035 (3)
O100.412 (14)0.111 (5)0.310 (10)0.140 (7)0.292 (11)0.112 (6)
O70.076 (4)0.533 (19)0.133 (6)0.024 (7)0.012 (4)0.140 (9)
Geometric parameters (Å, º) top
Cl1—O71.332 (7)C12—H12A0.9599
Cl1—O91.399 (5)C12—H12B0.9600
Cl1—O101.403 (7)C2—C11.500 (8)
Cl1—O81.410 (4)C2—H2A0.9600
N1—C131.492 (5)C2—H2B0.9601
N1—H1C0.8900C1—H1A0.9599
N1—H1D0.8900C1—H1B0.9600
N1—H1E0.8900C9—C101.493 (8)
C14—C131.528 (5)C9—H9A0.9600
C14—C13i1.528 (5)C9—H9B0.9601
C14—H14A0.9600C4—C31.492 (8)
C13—H13A0.9600C4—H4A0.9599
C13—H13B0.9600C4—H4B0.9600
O1—C121.423 (6)C3—H3A0.9600
O1—C11.444 (6)C3—H3B0.9600
O2—C21.420 (6)C6—C51.496 (9)
O2—C31.452 (6)C6—H6A0.9601
O6—C101.422 (6)C6—H6B0.9600
O6—C111.445 (6)C5—H5A0.9600
O5—C81.430 (7)C5—H5B0.9600
O5—C91.462 (7)C8—C71.492 (9)
O3—C41.429 (8)C8—H8A0.9602
O3—C51.468 (7)C8—H8B0.9600
O4—C61.403 (7)C10—H10A0.9602
O4—C71.462 (7)C10—H10B0.9600
C11—C121.494 (7)C7—H7A0.9601
C11—H11A0.9600C7—H7B0.9599
C11—H11B0.9600
O7—Cl1—O9110.3 (5)H1A—C1—H1B108.3
O7—Cl1—O10107.6 (7)O5—C9—C10109.1 (5)
O9—Cl1—O10105.2 (5)O5—C9—H9A110.1
O7—Cl1—O8111.1 (4)C10—C9—H9A111.4
O9—Cl1—O8113.7 (3)O5—C9—H9B108.9
O10—Cl1—O8108.5 (4)C10—C9—H9B109.0
C13—N1—H1C109.5H9A—C9—H9B108.3
C13—N1—H1D109.5O3—C4—C3110.2 (5)
H1C—N1—H1D109.5O3—C4—H4A108.6
C13—N1—H1E109.5C3—C4—H4A109.2
H1C—N1—H1E109.5O3—C4—H4B110.0
H1D—N1—H1E109.5C3—C4—H4B110.5
C13—C14—C13i111.6 (5)H4A—C4—H4B108.3
C13—C14—H14A109.3O2—C3—C4109.5 (4)
C13i—C14—H14A109.2O2—C3—H3A110.1
N1—C13—C14114.6 (4)C4—C3—H3A109.1
N1—C13—H13A108.5O2—C3—H3B109.9
C14—C13—H13A108.5C4—C3—H3B110.0
N1—C13—H13B108.7H3A—C3—H3B108.3
C14—C13—H13B108.5O4—C6—C5108.3 (5)
H13A—C13—H13B107.8O4—C6—H6A109.6
C12—O1—C1112.1 (4)C5—C6—H6A110.2
C2—O2—C3112.0 (4)O4—C6—H6B110.6
C10—O6—C11112.8 (4)C5—C6—H6B109.8
C8—O5—C9111.8 (5)H6A—C6—H6B108.4
C4—O3—C5114.2 (5)O3—C5—C6110.3 (5)
C6—O4—C7111.7 (5)O3—C5—H5A109.2
O6—C11—C12109.9 (4)C6—C5—H5A110.2
O6—C11—H11A109.4O3—C5—H5B109.2
C12—C11—H11A110.0C6—C5—H5B109.5
O6—C11—H11B109.5H5A—C5—H5B108.3
C12—C11—H11B109.8O5—C8—C7108.9 (5)
H11A—C11—H11B108.2O5—C8—H8A109.8
O1—C12—C11110.4 (4)C7—C8—H8A108.7
O1—C12—H12A109.8O5—C8—H8B110.2
C11—C12—H12A110.1C7—C8—H8B110.6
O1—C12—H12B109.0H8A—C8—H8B108.6
C11—C12—H12B109.2O6—C10—C9109.4 (5)
H12A—C12—H12B108.2O6—C10—H10A110.4
O2—C2—C1108.7 (4)C9—C10—H10A109.4
O2—C2—H2A109.7O6—C10—H10B109.9
C1—C2—H2A110.3C9—C10—H10B109.3
O2—C2—H2B110.1H10A—C10—H10B108.5
C1—C2—H2B109.4O4—C7—C8109.8 (4)
H2A—C2—H2B108.6O4—C7—H7A109.0
O1—C1—C2110.1 (4)C8—C7—H7A108.1
O1—C1—H1A110.0O4—C7—H7B110.3
C2—C1—H1A111.0C8—C7—H7B111.2
O1—C1—H1B108.8H7A—C7—H7B108.3
C2—C1—H1B108.6
C13i—C14—C13—N1179.1 (5)O3—C4—C3—O266.2 (6)
C10—O6—C11—C12178.9 (4)C7—O4—C6—C5171.5 (5)
C1—O1—C12—C11176.3 (4)C4—O3—C5—C6175.6 (5)
O6—C11—C12—O164.8 (5)O4—C6—C5—O365.9 (6)
C3—O2—C2—C1178.0 (4)C9—O5—C8—C7176.3 (5)
C12—O1—C1—C2173.0 (4)C11—O6—C10—C9171.0 (4)
O2—C2—C1—O166.2 (6)O5—C9—C10—O661.6 (6)
C8—O5—C9—C10172.4 (5)C6—O4—C7—C8176.6 (5)
C5—O3—C4—C3177.2 (4)O5—C8—C7—O465.6 (6)
C2—O2—C3—C4175.4 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.102.958 (4)161
N1—H1E···O30.892.082.951 (5)167
N1—H1D···O50.892.123.007 (5)177
C10—H10B···O100.962.553.478 (13)161
C13—H13A···O90.962.583.470 (7)154

Experimental details

Crystal data
Chemical formulaC3H12N22+·2ClO4·2C12H24O6
Mr803.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.984 (5), 9.0055 (18), 21.620 (4)
β (°) 113.59 (3)
V3)4101.0 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16855, 3606, 2059
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.248, 1.07
No. of reflections3606
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.42

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.102.958 (4)160.5
N1—H1E···O30.892.082.951 (5)167.2
N1—H1D···O50.892.123.007 (5)176.8
C10—H10B···O100.962.553.478 (13)161
C13—H13A···O90.962.583.470 (7)154
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011b). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds