metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{3,14-Di­methyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]do­cosane-κ4N,N′,N′′,N′′′)bis­­(nitrato-κO)copper(II)

aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 January 2012; accepted 15 January 2012; online 21 January 2012)

The CuII atom in the title compound, [Cu(NO3)2(C20H40N4)], is N,N′,N′′,N′′′-chelated by the macrocyclic ligand: the four N atoms form a square, above and below which are located the O atoms of the nitrate ions. The metal atom exists in a tetra­gonally distorted octa­hedron, on a special position of [\overline{1}] site symmetry. One of the amino groups is hydrogen bonded to an O atom of the nitrate ion. The other amino group is hydrogen bonded to O atom of an adjacent mol­ecule, generating a supra­molecular dimeric hydrogen-bonded dinuclear aggregate.

Related literature

For the synthesis of the cyclam, see: Choi et al. (2012[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012). Acta Cryst. E68, o102.]). For similar copper nitrate–cyclam adducts, see: Amadei et al. (1999[Amadei, G. A., Dickman, M. H., Wazzeh, R. A., Dimmock, P. & Earley, J. E. (1999). Inorg. Chim. Acta, 288, 40-46.]); Choi et al. (2001[Choi, M.-H., Kim, B. J., Kim, I.-C., Kim, S.-Y., Kim, Y., Harrowfield, J. M., Lee, M. K., Mocerino, M., Rukmini, E., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 707-722.], 2006[Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383-m2385.]); Dong et al. (1999[Dong, Y., Lawrence, G. A., Lindoy, L. F. & Turner, P. (1999). J. Chem. Soc. Dalton Trans. pp. 1567-1576.]); Liu & Chu (2010[Liu, X.-Y. & Chu, H.-Y. (2010). Acta Cryst. E66, m837.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C20H40N4)]

  • Mr = 524.12

  • Triclinic, [P \overline 1]

  • a = 8.2552 (10) Å

  • b = 8.8074 (11) Å

  • c = 9.1399 (10) Å

  • α = 67.879 (12)°

  • β = 68.780 (11)°

  • γ = 75.096 (11)°

  • V = 568.23 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.751, Tmax = 0.906

  • 4122 measured reflections

  • 2332 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.02

  • 2332 reflections

  • 159 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 (1) 2.15 (2) 2.992 (3) 160 (3)
N2—H2⋯O3ii 0.88 (1) 2.23 (2) 2.961 (3) 140 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The macrocycle, cyclam (1,4,8,11-tetraazacyclotetradecane), forms a large number of complexes with copper(II) salts in which the macrocle chelates in a tetradentate matter. In same cases, the counterion bonded to the metal atoms and in other cases, the metal atom exists in square-pyramidal geometry as the counterion is far away. The crystal structure of copper nitrate–cyclam has not been reported; the crystal structures of other substituted cyclams have the metal atom in a tetragonally elongated octahedral geometry (Amadei et al., 1999; Choi et al., 2006; Choi et al., 2001; Dong et al., 1999; Liu & Chu, 2010). The CuII atom in the title compound (Scheme I) is similarly chelated by the macrocyclic ligand in a tetragonally distorted octahedron (Fig.1). The atom lies on a special position of –1 site symmetry. One of the amino groups is hydrogen-bonded to an O atom of the nitrate ion. The other amino group is hydrogen-bonded to O atom of an adjacent molecule to generate a hydrogen-bonded dinuclear molecule (Table 1).

Related literature top

For the synthesis of the cyclam, see: Choi et al. (2012). For similar copper nitrate–cyclam adducts, see: Amadei et al. (1999); Choi et al. (2001, 2006); Dong et al. (1999); Liu & Chu (2010).

Experimental top

The macrocycle co-crystal, 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (naphthalen-1-yl)methanol prepared as described (Choi et al., 2012). Copper nitrate trihydrate (0.242 g, 1 mmol) dissolved in methanol (10 ml) was mixed with a suspension of the macrocycle co-crystal (0.163 g, 2.5 mmol) dissolved in methanol (10 ml). The mixture was heated for 30 minutes and then set aside for the growth of purple crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.99 to 1.00 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cu(NO3)2(C20H40N4) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane- κ4N,N',N'',N''')bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C20H40N4)]Z = 1
Mr = 524.12F(000) = 279
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2552 (10) ÅCell parameters from 1668 reflections
b = 8.8074 (11) Åθ = 2.5–27.5°
c = 9.1399 (10) ŵ = 1.01 mm1
α = 67.879 (12)°T = 100 K
β = 68.780 (11)°Prism, purple
γ = 75.096 (11)°0.30 × 0.20 × 0.10 mm
V = 568.23 (12) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2332 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1963 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.4041 pixels mm-1θmax = 26.5°, θmin = 2.5°
ω scanh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1011
Tmin = 0.751, Tmax = 0.906l = 1110
4122 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0874P)2]
where P = (Fo2 + 2Fc2)/3
2332 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.96 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu(NO3)2(C20H40N4)]γ = 75.096 (11)°
Mr = 524.12V = 568.23 (12) Å3
Triclinic, P1Z = 1
a = 8.2552 (10) ÅMo Kα radiation
b = 8.8074 (11) ŵ = 1.01 mm1
c = 9.1399 (10) ÅT = 100 K
α = 67.879 (12)°0.30 × 0.20 × 0.10 mm
β = 68.780 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2332 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1963 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.906Rint = 0.064
4122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.96 e Å3
2332 reflectionsΔρmin = 0.68 e Å3
159 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0158 (2)
N10.5570 (3)0.5225 (3)0.2605 (3)0.0152 (5)
H10.473 (3)0.481 (4)0.257 (4)0.022 (9)*
N20.6852 (3)0.2945 (3)0.5073 (3)0.0154 (5)
H20.777 (3)0.342 (3)0.484 (4)0.014 (8)*
N30.8305 (3)0.6621 (3)0.5099 (3)0.0193 (6)
O10.7574 (3)0.6375 (3)0.4223 (3)0.0228 (5)
O20.7518 (3)0.6441 (3)0.6596 (3)0.0280 (5)
O30.9780 (3)0.7070 (3)0.4452 (3)0.0260 (5)
C10.5512 (4)0.6927 (4)0.1448 (4)0.0201 (6)
H1A0.57870.68910.03120.024*
H1B0.64130.74750.14600.024*
C20.7261 (4)0.4161 (4)0.2131 (4)0.0171 (6)
H2A0.82270.47080.20450.020*
C30.7647 (4)0.3870 (4)0.0493 (4)0.0203 (6)
H3A0.77280.49400.04080.024*
H3B0.66750.33790.05280.024*
C40.9369 (4)0.2708 (4)0.0141 (4)0.0207 (6)
H4A0.95810.25090.09130.025*
H4B1.03530.32360.00230.025*
C50.9308 (4)0.1064 (4)0.1531 (4)0.0206 (6)
H5A1.04480.03480.12990.025*
H5B0.83860.04940.15930.025*
C60.8921 (4)0.1347 (4)0.3181 (4)0.0196 (6)
H6A0.99060.18130.31550.024*
H6B0.88210.02750.40790.024*
C70.7216 (4)0.2533 (4)0.3538 (4)0.0169 (6)
H70.62210.20010.36590.020*
C80.6715 (4)0.1477 (4)0.6603 (4)0.0177 (6)
H80.78960.07870.64870.021*
C90.6290 (4)0.2073 (4)0.8083 (4)0.0192 (6)
H9A0.63980.10930.90530.023*
H9B0.71890.27580.78510.023*
C100.5417 (4)0.0404 (4)0.6826 (4)0.0206 (6)
H10A0.57520.00520.58460.031*
H10B0.42380.10390.69710.031*
H10C0.54220.05730.78040.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0102 (3)0.0195 (3)0.0187 (3)0.00213 (18)0.0034 (2)0.0080 (2)
N10.0079 (11)0.0190 (13)0.0199 (13)0.0024 (9)0.0025 (10)0.0087 (10)
N20.0119 (12)0.0181 (13)0.0187 (12)0.0057 (9)0.0030 (10)0.0077 (10)
N30.0125 (12)0.0193 (13)0.0287 (15)0.0028 (9)0.0085 (11)0.0076 (11)
O10.0175 (11)0.0303 (12)0.0264 (11)0.0086 (9)0.0087 (9)0.0097 (10)
O20.0239 (12)0.0397 (14)0.0253 (12)0.0131 (10)0.0032 (10)0.0138 (10)
O30.0137 (11)0.0310 (13)0.0362 (13)0.0103 (9)0.0086 (10)0.0078 (10)
C10.0147 (14)0.0264 (17)0.0190 (15)0.0034 (12)0.0033 (12)0.0084 (13)
C20.0079 (13)0.0242 (16)0.0223 (15)0.0026 (11)0.0026 (11)0.0122 (13)
C30.0184 (15)0.0252 (17)0.0207 (15)0.0028 (12)0.0053 (12)0.0115 (13)
C40.0163 (15)0.0252 (16)0.0216 (15)0.0010 (12)0.0021 (12)0.0131 (13)
C50.0155 (15)0.0241 (16)0.0258 (16)0.0010 (12)0.0039 (12)0.0151 (13)
C60.0146 (14)0.0233 (16)0.0224 (15)0.0003 (11)0.0047 (12)0.0110 (13)
C70.0123 (14)0.0232 (15)0.0197 (15)0.0042 (11)0.0033 (11)0.0120 (12)
C80.0117 (14)0.0210 (15)0.0196 (15)0.0015 (11)0.0049 (11)0.0057 (12)
C90.0174 (15)0.0215 (15)0.0198 (15)0.0012 (11)0.0067 (12)0.0077 (12)
C100.0163 (15)0.0216 (16)0.0253 (16)0.0057 (11)0.0048 (12)0.0081 (13)
Geometric parameters (Å, º) top
Cu1—N12.007 (2)C3—H3A0.9900
Cu1—N1i2.007 (2)C3—H3B0.9900
Cu1—N2i2.044 (2)C4—C51.523 (4)
Cu1—N22.044 (2)C4—H4A0.9900
Cu1—O12.463 (2)C4—H4B0.9900
N1—C11.475 (4)C5—C61.527 (4)
N1—C21.486 (3)C5—H5A0.9900
N1—H10.879 (10)C5—H5B0.9900
N2—C71.487 (4)C6—C71.532 (4)
N2—C81.496 (4)C6—H6A0.9900
N2—H20.878 (10)C6—H6B0.9900
N3—O31.241 (3)C7—H71.0000
N3—O21.251 (3)C8—C101.517 (4)
N3—O11.265 (3)C8—C91.525 (4)
C1—C9i1.524 (4)C8—H81.0000
C1—H1A0.9900C9—C1i1.524 (4)
C1—H1B0.9900C9—H9A0.9900
C2—C31.520 (4)C9—H9B0.9900
C2—C71.521 (4)C10—H10A0.9800
C2—H2A1.0000C10—H10B0.9800
C3—C41.530 (4)C10—H10C0.9800
N1—Cu1—N1i180.0H3A—C3—H3B108.1
N1—Cu1—N2i95.20 (9)C5—C4—C3110.9 (2)
N1i—Cu1—N2i84.80 (9)C5—C4—H4A109.5
N1—Cu1—N284.80 (9)C3—C4—H4A109.5
N1i—Cu1—N295.20 (9)C5—C4—H4B109.5
N2i—Cu1—N2180.000 (1)C3—C4—H4B109.5
N1—Cu1—O187.75 (8)H4A—C4—H4B108.1
N1i—Cu1—O192.25 (8)C4—C5—C6110.4 (2)
N2i—Cu1—O197.63 (8)C4—C5—H5A109.6
N2—Cu1—O182.37 (8)C6—C5—H5A109.6
C1—N1—C2113.1 (2)C4—C5—H5B109.6
C1—N1—Cu1116.33 (18)C6—C5—H5B109.6
C2—N1—Cu1108.35 (17)H5A—C5—H5B108.1
C1—N1—H1106 (2)C5—C6—C7111.2 (2)
C2—N1—H1108 (2)C5—C6—H6A109.4
Cu1—N1—H1104 (2)C7—C6—H6A109.4
C7—N2—C8114.3 (2)C5—C6—H6B109.4
C7—N2—Cu1107.58 (17)C7—C6—H6B109.4
C8—N2—Cu1121.32 (18)H6A—C6—H6B108.0
C7—N2—H2102 (2)N2—C7—C2107.0 (2)
C8—N2—H2111 (2)N2—C7—C6113.1 (2)
Cu1—N2—H298 (2)C2—C7—C6111.3 (2)
O3—N3—O2120.9 (2)N2—C7—H7108.4
O3—N3—O1119.5 (2)C2—C7—H7108.4
O2—N3—O1119.6 (2)C6—C7—H7108.4
N3—O1—Cu1131.16 (18)N2—C8—C10112.4 (2)
N1—C1—C9i111.0 (2)N2—C8—C9108.9 (2)
N1—C1—H1A109.4C10—C8—C9112.8 (3)
C9i—C1—H1A109.4N2—C8—H8107.5
N1—C1—H1B109.4C10—C8—H8107.5
C9i—C1—H1B109.4C9—C8—H8107.5
H1A—C1—H1B108.0C1i—C9—C8116.4 (2)
N1—C2—C3114.3 (2)C1i—C9—H9A108.2
N1—C2—C7107.1 (2)C8—C9—H9A108.2
C3—C2—C7111.1 (2)C1i—C9—H9B108.2
N1—C2—H2A108.0C8—C9—H9B108.2
C3—C2—H2A108.0H9A—C9—H9B107.3
C7—C2—H2A108.0C8—C10—H10A109.5
C2—C3—C4110.7 (2)C8—C10—H10B109.5
C2—C3—H3A109.5H10A—C10—H10B109.5
C4—C3—H3A109.5C8—C10—H10C109.5
C2—C3—H3B109.5H10A—C10—H10C109.5
C4—C3—H3B109.5H10B—C10—H10C109.5
N2i—Cu1—N1—C135.3 (2)Cu1—N1—C2—C742.3 (2)
N2—Cu1—N1—C1144.7 (2)N1—C2—C3—C4177.7 (2)
O1—Cu1—N1—C162.11 (19)C7—C2—C3—C456.3 (3)
N2i—Cu1—N1—C2164.12 (17)C2—C3—C4—C557.5 (3)
N2—Cu1—N1—C215.88 (17)C3—C4—C5—C657.2 (3)
O1—Cu1—N1—C266.66 (18)C4—C5—C6—C756.0 (3)
N1—Cu1—N2—C714.16 (18)C8—N2—C7—C2178.5 (2)
N1i—Cu1—N2—C7165.84 (18)Cu1—N2—C7—C240.6 (2)
O1—Cu1—N2—C7102.58 (18)C8—N2—C7—C658.6 (3)
N1—Cu1—N2—C8148.4 (2)Cu1—N2—C7—C6163.59 (19)
N1i—Cu1—N2—C831.6 (2)N1—C2—C7—N255.2 (3)
O1—Cu1—N2—C8123.1 (2)C3—C2—C7—N2179.4 (2)
O3—N3—O1—Cu1166.62 (19)N1—C2—C7—C6179.2 (2)
O2—N3—O1—Cu114.8 (4)C3—C2—C7—C655.3 (3)
N1—Cu1—O1—N3172.7 (2)C5—C6—C7—N2175.7 (2)
N1i—Cu1—O1—N37.3 (2)C5—C6—C7—C255.2 (3)
N2i—Cu1—O1—N392.4 (2)C7—N2—C8—C1052.7 (3)
N2—Cu1—O1—N387.6 (2)Cu1—N2—C8—C1078.8 (3)
C2—N1—C1—C9i175.8 (2)C7—N2—C8—C9178.4 (2)
Cu1—N1—C1—C9i57.8 (3)Cu1—N2—C8—C946.9 (3)
C1—N1—C2—C363.6 (3)N2—C8—C9—C1i67.3 (3)
Cu1—N1—C2—C3165.83 (19)C10—C8—C9—C1i58.2 (3)
C1—N1—C2—C7172.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.88 (1)2.15 (2)2.992 (3)160 (3)
N2—H2···O3ii0.88 (1)2.23 (2)2.961 (3)140 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C20H40N4)]
Mr524.12
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2552 (10), 8.8074 (11), 9.1399 (10)
α, β, γ (°)67.879 (12), 68.780 (11), 75.096 (11)
V3)568.23 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.751, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
4122, 2332, 1963
Rint0.064
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.02
No. of reflections2332
No. of parameters159
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.68

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.88 (1)2.15 (2)2.992 (3)160 (3)
N2—H2···O3ii0.88 (1)2.23 (2)2.961 (3)140 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank Andong National University and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmadei, G. A., Dickman, M. H., Wazzeh, R. A., Dimmock, P. & Earley, J. E. (1999). Inorg. Chim. Acta, 288, 40–46.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChoi, M.-H., Kim, B. J., Kim, I.-C., Kim, S.-Y., Kim, Y., Harrowfield, J. M., Lee, M. K., Mocerino, M., Rukmini, E., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 707–722.  Web of Science CSD CrossRef Google Scholar
First citationChoi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012). Acta Cryst. E68, o102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383–m2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, Y., Lawrence, G. A., Lindoy, L. F. & Turner, P. (1999). J. Chem. Soc. Dalton Trans. pp. 1567–1576.  Google Scholar
First citationLiu, X.-Y. & Chu, H.-Y. (2010). Acta Cryst. E66, m837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds