organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O,O′-Diiso­propyl S-[2-(benzene­sulfon­amido)­eth­yl]phospho­rodi­thio­ate

aSinochem Ningbo (Group) Co. Ltd, Ningbo, Zhejiang 315000, People's Republic of China
*Correspondence e-mail: wuhaifeng@sinochem.com

(Received 7 December 2011; accepted 23 December 2011; online 7 January 2012)

The mol­ecular conformation of the title compound, C14H24NO4PS3, the selective herbicide bensulide, is stabilized by a weak intra­molecular C—H⋯S inter­action. In the crystal, chains are formed through inter­molecular N—H⋯S hydrogen bonds.

Related literature

For applications of N-(β-diorganodithio­phospho­ryleth­yl) aryl and alkyl sulfonamides in the field of agrochemicals, see: Llewellyn & Chester (1963[Llewellyn, W. & Chester, L. (1963). US Patent No. 3 205 253.]). Bensulide is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons, see: Meister (1992[Meister, R. T. (1992). Farm Chemicals Handbook. Willoghby, OH: Meister Publishing Company.]). For the synthesis, see: Llewellyn & Jeffrey (1978[Llewellyn, W. & Jeffrey, D. (1978). US Patent No. 4 117 043.]).

[Scheme 1]

Experimental

Crystal data
  • C14H24NO4PS3

  • Mr = 397.49

  • Monoclinic, P 21 /n

  • a = 8.6431 (17) Å

  • b = 24.465 (5) Å

  • c = 9.875 (2) Å

  • β = 104.99 (3)°

  • V = 2017.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.843, Tmax = 0.883

  • 19632 measured reflections

  • 4605 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.127

  • S = 1.11

  • 4605 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯S1i 0.86 2.86 3.496 (2) 132
C7—H7B⋯S1 0.97 2.83 3.447 (3) 122
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-(β-Diorganodithiophosphorylethyl) aryl and alkyl sulfonamides are known for their applications in the field of agrochemicals because of their significant biological properties (Llewellyn et al., 1963). The title compound C14H24NO4PS3 (I), with the common name bensulide, is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons (Meister, 1992). This typical organic phosphorus compound is one of our plant products that can be synthesized by combining the sodium salt of 2-(phenylsulfonamido)ethyl sulfate (II) and O,O'-diisopropyl phosphorodithioate (III) (Llewellyn et al., 1978) (Fig. 3).

In the title compound (Fig. 1), bond distances and angles are as expected. The P atom is coordinated by two S atoms and two O atoms. The O1—P—S1, S1—P—S2 and O2—P—S1 bond angles [117.91 (7), 114.48 (5), 111.46 (7)°, respectively] are larger than those for angles O2—P—S2, O1—P—O2 and O1—P—S2 [108.85 (8), 102.35 (9), 100.58 (7)°, respectively], indicating a distorted tetrahedral configuration. The molecular conformation is stabilized by weak intramolecular C—H···S and C—H···O interactions and one-dimensional chains are formed through intermolecular N—H···S hydrogen bonds (Table 1, Fig. 2).

Related literature top

For applications of N-(β-diorganodithiophosphorylethyl) aryl and alkyl sulfonamides in the field of agrochemicals, see: Llewellyn & Chester (1963). Bensulide is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons, see: Meister (1992). For the synthesis, see: Llewellyn & Jeffrey (1978).

Experimental top

A 30% aqueous solution of sodium 2-(phenylsulfonamido)ethyl sulfate [(II), 0.5mol] was added to a 30% aqueous solution of sodium O,O'-diisopropyl phosphorodithioate [(III), 0.5 mol]. Addition of 50% aqueous sodium hydroxide brought the pH to 10.5. The mixture was then heated to 85 °C for 4 h with vigorous stirring after which the reaction flask was cooled to 25 °C. The pH was lowered from 12 to approximately 8 by the addition of concentrated sulfuric acid. The product was extracted with toluene (400 ml), washed with 2% sodium bicarbonate solution followed by a saturated sodium chloride solution, then dried and evaporated. Recrystallization from toluene gave colourless blocks of (I).

Refinement top

Hydrogen atoms were placed in geometrically calculated positions with C—H = 0.93–0.97 Å and were treated using a riding model approximation with Uiso(H) = 1.2Ueq(aromatic C or N) or 1.5Ueq(methyl C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with displacement ellipsoids drawn at the 35% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of (I). Weak intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of (I).
O,O'-Diisopropyl S-[2-(benzenesulfonamido)ethyl]dithiophosphate top
Crystal data top
C14H24NO4PS3F(000) = 840
Mr = 397.49Dx = 1.309 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19632 reflections
a = 8.6431 (17) Åθ = 3.3–27.5°
b = 24.465 (5) ŵ = 0.46 mm1
c = 9.875 (2) ÅT = 293 K
β = 104.99 (3)°Block, colorless
V = 2017.1 (8) Å30.37 × 0.35 × 0.27 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4605 independent reflections
Radiation source: fine-focus sealed tube3083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.843, Tmax = 0.883k = 3131
19632 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.6749P]
where P = (Fo2 + 2Fc2)/3
4605 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H24NO4PS3V = 2017.1 (8) Å3
Mr = 397.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6431 (17) ŵ = 0.46 mm1
b = 24.465 (5) ÅT = 293 K
c = 9.875 (2) Å0.37 × 0.35 × 0.27 mm
β = 104.99 (3)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4605 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3083 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.883Rint = 0.029
19632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.11Δρmax = 0.35 e Å3
4605 reflectionsΔρmin = 0.40 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.25939 (7)0.64011 (3)0.36909 (6)0.04780 (17)
S10.36714 (8)0.63940 (4)0.22205 (8)0.0740 (2)
S20.40173 (9)0.66439 (3)0.56352 (7)0.0654 (2)
S30.47902 (8)0.85949 (3)0.34382 (7)0.05828 (19)
N0.5557 (2)0.81061 (8)0.4499 (2)0.0591 (5)
H0A0.65740.80850.48580.071*
O10.19173 (18)0.58432 (6)0.40940 (18)0.0543 (4)
O20.10605 (17)0.67690 (7)0.33022 (17)0.0520 (4)
O30.6077 (2)0.89486 (8)0.3366 (2)0.0812 (6)
O40.3819 (3)0.83522 (9)0.2196 (2)0.0808 (6)
C10.2942 (3)0.53593 (10)0.4530 (3)0.0570 (6)
H1A0.40640.54600.46330.068*
C20.2453 (5)0.49360 (13)0.3407 (4)0.0934 (11)
H2A0.26400.50720.25510.140*
H2B0.13360.48550.32630.140*
H2C0.30700.46100.36860.140*
C30.2729 (5)0.51819 (14)0.5913 (4)0.0915 (10)
H3A0.30720.54690.65870.137*
H3B0.33580.48600.62190.137*
H3C0.16200.51020.58250.137*
C40.0043 (3)0.68091 (10)0.4232 (3)0.0551 (6)
H4A0.04810.66510.51480.066*
C50.1513 (3)0.64868 (14)0.3583 (4)0.0869 (10)
H5A0.12310.61100.35200.130*
H5B0.19950.66250.26610.130*
H5C0.22580.65180.41500.130*
C60.0328 (4)0.74050 (12)0.4411 (4)0.0874 (10)
H6A0.06670.75800.48620.131*
H6B0.10700.74490.49780.131*
H6C0.07630.75690.35100.131*
C70.5288 (3)0.71656 (11)0.5167 (3)0.0647 (7)
H7A0.62320.72140.59410.078*
H7B0.56400.70410.43630.078*
C80.4462 (3)0.76989 (10)0.4830 (3)0.0601 (6)
H8A0.35380.76570.40350.072*
H8B0.40880.78230.56230.072*
C90.3490 (3)0.89472 (9)0.4243 (2)0.0505 (5)
C100.4098 (4)0.93520 (10)0.5218 (3)0.0628 (7)
H10A0.51800.94410.54370.075*
C110.3071 (4)0.96202 (12)0.5857 (3)0.0766 (8)
H11A0.34630.98960.65020.092*
C120.1486 (4)0.94845 (13)0.5552 (3)0.0768 (8)
H12A0.08100.96660.59960.092*
C130.0884 (4)0.90801 (14)0.4589 (3)0.0757 (8)
H13A0.01960.89880.43880.091*
C140.1885 (3)0.88125 (11)0.3926 (3)0.0623 (7)
H14A0.14810.85420.32670.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0387 (3)0.0591 (4)0.0454 (3)0.0051 (3)0.0104 (2)0.0005 (3)
S10.0534 (4)0.1117 (6)0.0642 (5)0.0140 (4)0.0283 (3)0.0037 (4)
S20.0685 (4)0.0623 (4)0.0540 (4)0.0086 (3)0.0046 (3)0.0056 (3)
S30.0680 (4)0.0611 (4)0.0495 (4)0.0070 (3)0.0221 (3)0.0053 (3)
N0.0486 (11)0.0557 (12)0.0750 (15)0.0015 (10)0.0195 (10)0.0034 (10)
O10.0462 (8)0.0532 (9)0.0630 (11)0.0029 (7)0.0130 (8)0.0035 (8)
O20.0439 (8)0.0652 (10)0.0501 (10)0.0141 (7)0.0181 (7)0.0079 (7)
O30.0895 (14)0.0746 (12)0.0930 (16)0.0182 (11)0.0482 (12)0.0031 (11)
O40.0968 (15)0.0956 (15)0.0493 (11)0.0054 (12)0.0176 (10)0.0195 (10)
C10.0523 (13)0.0521 (13)0.0626 (16)0.0069 (11)0.0076 (11)0.0040 (11)
C20.101 (2)0.0698 (19)0.095 (3)0.0190 (18)0.001 (2)0.0266 (17)
C30.121 (3)0.078 (2)0.080 (2)0.010 (2)0.035 (2)0.0165 (17)
C40.0505 (13)0.0622 (14)0.0597 (15)0.0066 (12)0.0268 (11)0.0014 (12)
C50.0572 (16)0.097 (2)0.116 (3)0.0085 (16)0.0391 (18)0.025 (2)
C60.089 (2)0.0681 (18)0.123 (3)0.0079 (17)0.061 (2)0.0056 (18)
C70.0460 (13)0.0616 (15)0.0792 (19)0.0012 (12)0.0031 (12)0.0021 (13)
C80.0564 (14)0.0547 (14)0.0730 (18)0.0022 (12)0.0237 (13)0.0054 (12)
C90.0616 (14)0.0488 (12)0.0403 (12)0.0011 (11)0.0118 (10)0.0044 (9)
C100.0729 (17)0.0571 (14)0.0581 (16)0.0088 (13)0.0165 (13)0.0068 (12)
C110.103 (2)0.0637 (17)0.0653 (19)0.0023 (17)0.0264 (17)0.0104 (14)
C120.090 (2)0.0785 (19)0.0666 (19)0.0278 (18)0.0287 (17)0.0078 (15)
C130.0605 (16)0.096 (2)0.069 (2)0.0095 (16)0.0140 (14)0.0131 (17)
C140.0616 (15)0.0693 (16)0.0513 (15)0.0022 (13)0.0059 (12)0.0012 (12)
Geometric parameters (Å, º) top
P—O21.5654 (16)C4—H4A0.9800
P—O11.5761 (18)C5—H5A0.9600
P—S11.9171 (10)C5—H5B0.9600
P—S22.0811 (11)C5—H5C0.9600
S2—C71.820 (3)C6—H6A0.9600
S3—O41.425 (2)C6—H6B0.9600
S3—O31.4254 (19)C6—H6C0.9600
S3—N1.615 (2)C7—C81.484 (4)
S3—C91.761 (3)C7—H7A0.9700
N—C81.468 (3)C7—H7B0.9700
N—H0A0.8600C8—H8A0.9700
O1—C11.474 (3)C8—H8B0.9700
O2—C41.489 (3)C9—C141.381 (3)
C1—C31.489 (4)C9—C101.386 (3)
C1—C21.496 (4)C10—C111.381 (4)
C1—H1A0.9800C10—H10A0.9300
C2—H2A0.9600C11—C121.365 (4)
C2—H2B0.9600C11—H11A0.9300
C2—H2C0.9600C12—C131.377 (4)
C3—H3A0.9600C12—H12A0.9300
C3—H3B0.9600C13—C141.378 (4)
C3—H3C0.9600C13—H13A0.9300
C4—C51.492 (4)C14—H14A0.9300
C4—C61.497 (4)
O2—P—O1102.35 (9)C4—C5—H5A109.5
O2—P—S1111.46 (7)C4—C5—H5B109.5
O1—P—S1117.91 (7)H5A—C5—H5B109.5
O2—P—S2108.85 (8)C4—C5—H5C109.5
O1—P—S2100.58 (7)H5A—C5—H5C109.5
S1—P—S2114.48 (5)H5B—C5—H5C109.5
C7—S2—P102.56 (10)C4—C6—H6A109.5
O4—S3—O3120.22 (14)C4—C6—H6B109.5
O4—S3—N107.55 (13)H6A—C6—H6B109.5
O3—S3—N106.68 (13)C4—C6—H6C109.5
O4—S3—C9106.87 (12)H6A—C6—H6C109.5
O3—S3—C9108.84 (12)H6B—C6—H6C109.5
N—S3—C9105.83 (11)C8—C7—S2112.74 (18)
C8—N—S3117.80 (17)C8—C7—H7A109.0
C8—N—H0A121.1S2—C7—H7A109.0
S3—N—H0A121.1C8—C7—H7B109.0
C1—O1—P122.36 (15)S2—C7—H7B109.0
C4—O2—P121.58 (15)H7A—C7—H7B107.8
O1—C1—C3107.1 (2)N—C8—C7110.2 (2)
O1—C1—C2107.8 (2)N—C8—H8A109.6
C3—C1—C2113.6 (3)C7—C8—H8A109.6
O1—C1—H1A109.4N—C8—H8B109.6
C3—C1—H1A109.4C7—C8—H8B109.6
C2—C1—H1A109.4H8A—C8—H8B108.1
C1—C2—H2A109.5C14—C9—C10120.4 (2)
C1—C2—H2B109.5C14—C9—S3120.14 (19)
H2A—C2—H2B109.5C10—C9—S3119.4 (2)
C1—C2—H2C109.5C11—C10—C9118.9 (3)
H2A—C2—H2C109.5C11—C10—H10A120.5
H2B—C2—H2C109.5C9—C10—H10A120.5
C1—C3—H3A109.5C12—C11—C10120.7 (3)
C1—C3—H3B109.5C12—C11—H11A119.7
H3A—C3—H3B109.5C10—C11—H11A119.7
C1—C3—H3C109.5C11—C12—C13120.4 (3)
H3A—C3—H3C109.5C11—C12—H12A119.8
H3B—C3—H3C109.5C13—C12—H12A119.8
O2—C4—C5108.1 (2)C12—C13—C14119.8 (3)
O2—C4—C6106.8 (2)C12—C13—H13A120.1
C5—C4—C6114.7 (2)C14—C13—H13A120.1
O2—C4—H4A109.0C13—C14—C9119.7 (3)
C5—C4—H4A109.0C13—C14—H14A120.1
C6—C4—H4A109.0C9—C14—H14A120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···S1i0.862.863.496 (2)132
C7—H7B···S10.972.833.447 (3)122
C8—H8A···O40.972.552.980 (3)107
C14—H14A···O40.932.552.908 (4)103
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H24NO4PS3
Mr397.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6431 (17), 24.465 (5), 9.875 (2)
β (°) 104.99 (3)
V3)2017.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.37 × 0.35 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.843, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
19632, 4605, 3083
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.11
No. of reflections4605
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···S1i0.862.863.496 (2)132
C7—H7B···S10.972.833.447 (3)122
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank Professor Yueqing Zheng (Ningbo University, Ningbo, China) for helpful discussions and Wenxiang Huang for the X-ray data collection.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLlewellyn, W. & Chester, L. (1963). US Patent No. 3 205 253.  Google Scholar
First citationLlewellyn, W. & Jeffrey, D. (1978). US Patent No. 4 117 043.  Google Scholar
First citationMeister, R. T. (1992). Farm Chemicals Handbook. Willoghby, OH: Meister Publishing Company.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds