metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m262-m263

catena-Poly[[bis­­(1-methyl-1H-imidazole-κN3)zinc]-μ-3-nitro­phthalato-κ2O1:O2]

aSchool of Materials and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China, and bSchool of Environment and Chemical Engineering, and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 8 January 2012; accepted 2 February 2012; online 10 February 2012)

In the title complex, [Zn(C8H3NO6)(C4H6N2)2]n, the carboxyl­ate groups of the 3-nitro­phthalate dianion ligand coordinate the ZnII ion in a bis-monodentate mode. The ZnII ion shows distorted tetra­hedral coordination as it is bonded to two O atoms from the carboxyl­ate groups of symmetry-related 3-nitro­phthalate anions and two N atoms of two independent 1-methyl­imidazole mol­ecules. The bridging 3-nitro­phthalate ligand allows the formation of one-dimensional chains in the c direction. The crystal structure is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures with methyl­imidazole, see: Baca et al. (2003[Baca, S. G., Simonov, Y. A., Gdaniec, M., Gerbeleu, N., Filippova, I. G. & Timco, G. A. (2003). Inorg. Chem. Commun. 6, 685-689.], 2004[Baca, S. G., Filippova, I. G., Gherco, O. A., Gdaniec, M., Simonov, Y. A., Gerbeleu, N. V., Franz, P., Basler, R. & Decurtins, S. (2004). Inorg. Chim. Acta, 357, 3419-3429.]); Zhao (2008[Zhao, J. (2008). Acta Cryst. E64, m1335.]). For related coordination modes of phthalate and substituted phthalate with metal, see: Biagini Cingi et al. (1978[Biagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1978). Acta Cryst. B34, 134-137.]); Guo & Guo (2007[Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595-m597.]); Ma et al. (2004[Ma, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522-3532.]); Wang et al. (2009[Wang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42-m44.]); Yang et al. (2003[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507-m509.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H3NO6)(C4H6N2)2]

  • Mr = 438.70

  • Monoclinic, P 21 /c

  • a = 8.375 (2) Å

  • b = 16.005 (4) Å

  • c = 14.057 (4) Å

  • β = 102.618 (4)°

  • V = 1838.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 294 K

  • 0.18 × 0.06 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.883, Tmax = 0.921

  • 13428 measured reflections

  • 3240 independent reflections

  • 2904 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.06

  • 3240 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond angles (°)

O2—Zn1—O3i 105.60 (6)
O2—Zn1—N3 123.39 (7)
O3i—Zn1—N3 110.17 (7)
O2—Zn1—N1 104.66 (6)
O3i—Zn1—N1 103.44 (7)
N3—Zn1—N1 107.78 (7)
O1—C1—O2 126.52 (18)
O4—C8—O3 125.73 (19)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4 0.93 2.25 3.156 (3) 166
C11—H11⋯O1ii 0.93 2.53 3.297 (3) 140
C12—H12A⋯O5iii 0.96 2.44 3.078 (3) 124
C13—H13⋯O1i 0.93 2.46 3.373 (3) 169
C16—H16B⋯O2iv 0.96 2.44 3.345 (3) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic dicarboxylate ligands such as phthalate (phth) and substituted phthalate have been used in architecture of polymeric metal complexes because they can act as a bis-monodentate, bis-bidentate and combined modes of coordination to form short bridges via one carboxylato end, or long bridges via the benzene ring, leading to a great variety of structures (Zhao, 2008; Biagini Cingi et al., 1978; Guo & Guo, 2007; Wang et al., 2009; Ma et al., 2004; Baca et al., 2003, 2004; Yang et al., 2003). We have used the 3-nitrophthalate dianion as a ligand, and have obtained the title novel four-coordinate 3-nitrophthalate-zinc complex. We describe here the structure of this one-dimensional metal-nitrophthalate coordination polymer with bis-monodentate coordination mode.

The asymmetric unit in the structure of the title compound comprises one Zn atom, one complete 3-nitrophthalate dianion and two non-equivalent 1-methylimidazole molecules, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination sphere of the Zn atom. Selected geometric parameters are given in Table 1.

The Zn atom exhibits a distorted tetrahedral environment with atoms O2, O3i (see Fig. 1 for symmetry codes) of two non-equivalent 3-nitrophthalate dianions and N1 and N3 atoms of coordinated 1-methylimidazole molecules (see Table 1 for bond lengths and angles), and this results in forming one-dimensional chains along the c direction. These are further aggregated into a three-dimensional framework via weak C—H···O interactions (see Table 2). A packing diagram is shown in Fig. 2.

Related literature top

For related structures with methylimidazole, see: Baca et al. (2003, 2004); Zhao (2008). For related coordination modes of phthalate and substituted phthalate with metal, see: Biagini Cingi et al. (1978); Guo & Guo (2007); Ma et al. (2004); Wang et al. (2009); Yang et al. (2003).

Experimental top

Zinc oxide (0.21 g, 2.5 mmol) was added to a stirred solution of 3-nitrophthalic acid (0.53 g, 2.5 mmol) in boiling water (20.0 ml) over a period of 40 min, then drip 1-methylimidazole (0.33 g, 4 mmol) in the solution. After filtration, slow evaporation over a period of one week at room temperature provided colorless needle of the title complex.

Refinement top

The H atoms were treated as riding, with C—H = 0.93 Å and Uiso (H) = 1.2 Ueq(C) for aromatic CH groups, and C—H = 0.96 Å and Uiso (H) = 1.5 Ueq(C) for methyl CH3 groups.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, showing the coordination environment for Zn atom; displacement ellipsoids are drawn at the 30% probability level [Symmetry code: (i) x, -y+1/2, z+1/2].
[Figure 2] Fig. 2. The packing diagram of the complex, viewed down the b axis, showing its one dimensional chain structure along the c direction.
catena-Poly[[bis(1-methyl-1Himidazole-κN3)zinc]- µ-3-nitrophthalato-κ2O1:O2] top
Crystal data top
[Zn(C8H3NO6)(C4H6N2)2]F(000) = 896
Mr = 438.70Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6551 reflections
a = 8.375 (2) Åθ = 1.5–27.9°
b = 16.005 (4) ŵ = 1.38 mm1
c = 14.057 (4) ÅT = 294 K
β = 102.618 (4)°Needle, colorless
V = 1838.7 (8) Å30.18 × 0.06 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3240 independent reflections
Radiation source: rotating anode2904 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.027
Detector resolution: 28.57 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1918
Tmin = 0.883, Tmax = 0.921l = 1616
13428 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.3182P]
where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max = 0.009
255 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.37 e Å3
0 constraints
Crystal data top
[Zn(C8H3NO6)(C4H6N2)2]V = 1838.7 (8) Å3
Mr = 438.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.375 (2) ŵ = 1.38 mm1
b = 16.005 (4) ÅT = 294 K
c = 14.057 (4) Å0.18 × 0.06 × 0.06 mm
β = 102.618 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3240 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2904 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.921Rint = 0.027
13428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
3240 reflectionsΔρmin = 0.37 e Å3
255 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.37841 (3)0.207619 (14)0.455381 (16)0.01901 (10)
O10.40470 (16)0.33302 (8)0.29849 (10)0.0208 (3)
O20.21557 (17)0.27506 (9)0.36867 (10)0.0232 (3)
O30.25521 (18)0.36236 (9)0.02871 (10)0.0240 (3)
O40.21554 (18)0.24772 (9)0.11179 (10)0.0247 (3)
O50.1941 (2)0.44350 (11)0.44209 (11)0.0380 (4)
O60.0626 (2)0.41913 (11)0.43565 (12)0.0429 (4)
N10.4567 (2)0.12574 (10)0.36701 (12)0.0205 (4)
N20.4793 (2)0.05951 (11)0.23352 (12)0.0242 (4)
N30.5739 (2)0.25540 (11)0.54444 (12)0.0230 (4)
N40.7568 (2)0.28401 (11)0.67687 (13)0.0282 (4)
N50.0545 (2)0.42875 (11)0.39749 (13)0.0289 (4)
C10.2635 (2)0.32439 (12)0.30897 (13)0.0178 (4)
C20.1264 (2)0.37573 (12)0.24794 (14)0.0180 (4)
C30.0247 (3)0.42461 (13)0.29116 (15)0.0246 (5)
C40.0997 (3)0.47334 (15)0.23928 (17)0.0353 (6)
H40.16570.50460.27120.042*
C50.1245 (3)0.47481 (16)0.13908 (17)0.0392 (6)
H50.20580.50850.10260.047*
C60.0277 (3)0.42597 (14)0.09312 (16)0.0320 (5)
H60.04570.42650.02550.038*
C70.0960 (2)0.37607 (12)0.14624 (14)0.0205 (4)
C80.1969 (2)0.32282 (13)0.09277 (14)0.0208 (4)
C90.4173 (2)0.12626 (12)0.27040 (15)0.0217 (5)
H90.35470.16750.23310.026*
C100.5501 (3)0.05407 (14)0.39165 (16)0.0283 (5)
H100.59670.03710.45490.034*
C110.5631 (3)0.01286 (14)0.31019 (16)0.0302 (5)
H110.61780.03720.30660.036*
C120.4611 (3)0.03974 (15)0.13012 (16)0.0350 (6)
H12A0.39920.08300.09140.053*
H12B0.40500.01260.11610.053*
H12C0.56730.03580.11500.053*
C130.6139 (3)0.24697 (13)0.64004 (15)0.0244 (5)
H130.55100.21900.67680.029*
C140.6993 (3)0.30033 (14)0.51958 (17)0.0305 (5)
H140.70460.31600.45660.037*
C150.8124 (3)0.31792 (15)0.60038 (17)0.0344 (6)
H150.90940.34730.60390.041*
C160.8332 (3)0.29180 (16)0.78106 (17)0.0407 (6)
H16A0.81700.34740.80270.061*
H16B0.94830.28070.79100.061*
H16C0.78420.25240.81760.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02000 (15)0.01878 (15)0.01866 (14)0.00048 (9)0.00515 (10)0.00074 (9)
O10.0161 (8)0.0221 (8)0.0249 (7)0.0007 (6)0.0061 (6)0.0011 (6)
O20.0216 (8)0.0265 (8)0.0231 (7)0.0019 (6)0.0087 (6)0.0072 (6)
O30.0287 (8)0.0241 (8)0.0211 (7)0.0016 (6)0.0099 (6)0.0014 (6)
O40.0267 (9)0.0216 (8)0.0249 (8)0.0037 (6)0.0036 (6)0.0006 (6)
O50.0327 (10)0.0483 (11)0.0323 (9)0.0025 (8)0.0058 (7)0.0094 (8)
O60.0411 (11)0.0552 (11)0.0412 (10)0.0013 (9)0.0285 (8)0.0008 (9)
N10.0228 (10)0.0190 (9)0.0207 (9)0.0013 (7)0.0068 (7)0.0010 (7)
N20.0248 (10)0.0224 (9)0.0269 (9)0.0005 (8)0.0086 (8)0.0023 (8)
N30.0197 (9)0.0255 (10)0.0245 (9)0.0002 (7)0.0066 (7)0.0014 (8)
N40.0187 (10)0.0357 (11)0.0295 (10)0.0015 (8)0.0036 (8)0.0062 (8)
N50.0340 (12)0.0273 (10)0.0289 (10)0.0058 (8)0.0146 (9)0.0006 (8)
C10.0217 (11)0.0157 (10)0.0163 (10)0.0006 (8)0.0047 (8)0.0030 (8)
C20.0163 (10)0.0169 (10)0.0220 (10)0.0001 (8)0.0066 (8)0.0023 (8)
C30.0248 (12)0.0261 (12)0.0251 (11)0.0029 (9)0.0106 (9)0.0013 (9)
C40.0301 (14)0.0393 (14)0.0395 (14)0.0162 (11)0.0142 (11)0.0017 (11)
C50.0300 (14)0.0484 (16)0.0380 (14)0.0215 (11)0.0047 (11)0.0079 (12)
C60.0279 (13)0.0407 (14)0.0257 (12)0.0086 (10)0.0027 (9)0.0041 (10)
C70.0166 (11)0.0221 (11)0.0232 (10)0.0011 (8)0.0052 (8)0.0009 (9)
C80.0165 (11)0.0261 (12)0.0175 (10)0.0002 (9)0.0013 (8)0.0027 (9)
C90.0187 (11)0.0176 (11)0.0292 (11)0.0002 (8)0.0058 (8)0.0011 (9)
C100.0273 (13)0.0291 (12)0.0285 (11)0.0057 (10)0.0059 (9)0.0088 (10)
C110.0305 (13)0.0240 (12)0.0375 (13)0.0091 (10)0.0104 (10)0.0043 (10)
C120.0433 (15)0.0348 (13)0.0287 (12)0.0035 (11)0.0115 (11)0.0080 (11)
C130.0206 (11)0.0263 (12)0.0269 (11)0.0016 (9)0.0066 (9)0.0010 (9)
C140.0286 (13)0.0348 (13)0.0313 (13)0.0064 (10)0.0134 (10)0.0026 (10)
C150.0237 (13)0.0396 (14)0.0425 (14)0.0095 (10)0.0129 (10)0.0082 (12)
C160.0277 (14)0.0570 (17)0.0324 (14)0.0029 (11)0.0047 (10)0.0035 (12)
Geometric parameters (Å, º) top
Zn1—O21.9454 (14)C2—C71.396 (3)
Zn1—O3i1.9612 (14)C3—C41.376 (3)
Zn1—N31.9841 (17)C4—C51.378 (3)
Zn1—N12.0116 (17)C4—H40.9300
O1—C11.231 (2)C5—C61.383 (3)
O2—C11.279 (2)C5—H50.9300
O3—C81.281 (2)C6—C71.389 (3)
O4—C81.234 (2)C6—H60.9300
O5—N51.223 (2)C7—C81.511 (3)
O6—N51.226 (2)C9—H90.9300
N1—C91.326 (3)C10—C111.346 (3)
N1—C101.389 (3)C10—H100.9300
N2—C91.341 (3)C11—H110.9300
N2—C111.371 (3)C12—H12A0.9600
N2—C121.463 (3)C12—H12B0.9600
N3—C131.319 (3)C12—H12C0.9600
N3—C141.380 (3)C13—H130.9300
N4—C131.335 (3)C14—C151.340 (3)
N4—C151.373 (3)C14—H140.9300
N4—C161.470 (3)C15—H150.9300
N5—C31.462 (3)C16—H16A0.9600
C1—C21.516 (3)C16—H16B0.9600
C2—C31.390 (3)C16—H16C0.9600
O2—Zn1—O3i105.60 (6)C5—C6—H6119.4
O2—Zn1—N3123.39 (7)C7—C6—H6119.4
O3i—Zn1—N3110.17 (7)C6—C7—C2120.04 (19)
O2—Zn1—N1104.66 (6)C6—C7—C8119.29 (18)
O3i—Zn1—N1103.44 (7)C2—C7—C8120.67 (17)
N3—Zn1—N1107.78 (7)O4—C8—O3125.73 (19)
C1—O2—Zn1118.44 (13)O4—C8—C7119.97 (18)
C8—O3—Zn1ii114.34 (13)O3—C8—C7114.30 (17)
C9—N1—C10105.16 (17)N1—C9—N2111.11 (18)
C9—N1—Zn1125.92 (14)N1—C9—H9124.4
C10—N1—Zn1128.74 (14)N2—C9—H9124.4
C9—N2—C11107.74 (17)C11—C10—N1109.76 (19)
C9—N2—C12126.27 (18)C11—C10—H10125.1
C11—N2—C12125.99 (19)N1—C10—H10125.1
C13—N3—C14105.86 (18)C10—C11—N2106.23 (19)
C13—N3—Zn1126.48 (15)C10—C11—H11126.9
C14—N3—Zn1127.59 (15)N2—C11—H11126.9
C13—N4—C15107.49 (19)N2—C12—H12A109.5
C13—N4—C16125.6 (2)N2—C12—H12B109.5
C15—N4—C16126.8 (2)H12A—C12—H12B109.5
O5—N5—O6124.51 (19)N2—C12—H12C109.5
O5—N5—C3117.59 (18)H12A—C12—H12C109.5
O6—N5—C3117.88 (19)H12B—C12—H12C109.5
O1—C1—O2126.52 (18)N3—C13—N4110.9 (2)
O1—C1—C2119.99 (17)N3—C13—H13124.6
O2—C1—C2113.49 (17)N4—C13—H13124.6
C3—C2—C7116.93 (18)C15—C14—N3109.3 (2)
C3—C2—C1121.21 (17)C15—C14—H14125.3
C7—C2—C1121.86 (17)N3—C14—H14125.3
C4—C3—C2123.5 (2)C14—C15—N4106.4 (2)
C4—C3—N5117.16 (19)C14—C15—H15126.8
C2—C3—N5119.23 (18)N4—C15—H15126.8
C3—C4—C5118.6 (2)N4—C16—H16A109.5
C3—C4—H4120.7N4—C16—H16B109.5
C5—C4—H4120.7H16A—C16—H16B109.5
C4—C5—C6119.7 (2)N4—C16—H16C109.5
C4—C5—H5120.2H16A—C16—H16C109.5
C6—C5—H5120.2H16B—C16—H16C109.5
C5—C6—C7121.2 (2)
O3i—Zn1—O2—C1177.09 (13)C4—C5—C6—C70.9 (4)
N3—Zn1—O2—C155.12 (16)C5—C6—C7—C21.2 (3)
N1—Zn1—O2—C168.28 (15)C5—C6—C7—C8179.1 (2)
O2—Zn1—N1—C97.11 (18)C3—C2—C7—C62.2 (3)
O3i—Zn1—N1—C9117.49 (17)C1—C2—C7—C6178.04 (19)
N3—Zn1—N1—C9125.83 (17)C3—C2—C7—C8178.14 (18)
O2—Zn1—N1—C10167.15 (17)C1—C2—C7—C81.7 (3)
O3i—Zn1—N1—C1056.76 (19)Zn1ii—O3—C8—O41.6 (3)
N3—Zn1—N1—C1059.91 (19)Zn1ii—O3—C8—C7177.52 (12)
O2—Zn1—N3—C13121.96 (17)C6—C7—C8—O4129.1 (2)
O3i—Zn1—N3—C133.9 (2)C2—C7—C8—O451.2 (3)
N1—Zn1—N3—C13116.05 (18)C6—C7—C8—O350.1 (3)
O2—Zn1—N3—C1461.5 (2)C2—C7—C8—O3129.6 (2)
O3i—Zn1—N3—C14172.64 (17)C10—N1—C9—N20.3 (2)
N1—Zn1—N3—C1460.4 (2)Zn1—N1—C9—N2175.08 (13)
Zn1—O2—C1—O11.6 (3)C11—N2—C9—N10.3 (2)
Zn1—O2—C1—C2177.94 (12)C12—N2—C9—N1179.79 (19)
O1—C1—C2—C3125.2 (2)C9—N1—C10—C110.7 (2)
O2—C1—C2—C354.5 (2)Zn1—N1—C10—C11174.44 (15)
O1—C1—C2—C755.0 (3)N1—C10—C11—N20.9 (3)
O2—C1—C2—C7125.3 (2)C9—N2—C11—C100.7 (2)
C7—C2—C3—C41.3 (3)C12—N2—C11—C10179.3 (2)
C1—C2—C3—C4178.9 (2)C14—N3—C13—N40.1 (2)
C7—C2—C3—N5178.00 (18)Zn1—N3—C13—N4177.23 (14)
C1—C2—C3—N52.2 (3)C15—N4—C13—N30.3 (2)
O5—N5—C3—C4127.4 (2)C16—N4—C13—N3175.7 (2)
O6—N5—C3—C450.9 (3)C13—N3—C14—C150.1 (3)
O5—N5—C3—C249.5 (3)Zn1—N3—C14—C15176.93 (16)
O6—N5—C3—C2132.1 (2)N3—C14—C15—N40.3 (3)
C2—C3—C4—C50.7 (4)C13—N4—C15—C140.4 (3)
N5—C3—C4—C5176.1 (2)C16—N4—C15—C14175.5 (2)
C3—C4—C5—C61.8 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O40.932.253.156 (3)166
C11—H11···O1iii0.932.533.297 (3)140
C12—H12A···O5ii0.962.443.078 (3)124
C13—H13···O1i0.932.463.373 (3)169
C16—H16B···O2iv0.962.443.345 (3)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H3NO6)(C4H6N2)2]
Mr438.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.375 (2), 16.005 (4), 14.057 (4)
β (°) 102.618 (4)
V3)1838.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.18 × 0.06 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.883, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
13428, 3240, 2904
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.06
No. of reflections3240
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O2—Zn1—O3i105.60 (6)O3i—Zn1—N1103.44 (7)
O2—Zn1—N3123.39 (7)N3—Zn1—N1107.78 (7)
O3i—Zn1—N3110.17 (7)O1—C1—O2126.52 (18)
O2—Zn1—N1104.66 (6)O4—C8—O3125.73 (19)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O40.932.253.156 (3)165.6
C11—H11···O1ii0.932.533.297 (3)139.8
C12—H12A···O5iii0.962.443.078 (3)123.6
C13—H13···O1i0.932.463.373 (3)168.5
C16—H16B···O2iv0.962.443.345 (3)158.2
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Tianjin Polytechnic University for financial support.

References

First citationBaca, S. G., Filippova, I. G., Gherco, O. A., Gdaniec, M., Simonov, Y. A., Gerbeleu, N. V., Franz, P., Basler, R. & Decurtins, S. (2004). Inorg. Chim. Acta, 357, 3419–3429.  Web of Science CrossRef CAS Google Scholar
First citationBaca, S. G., Simonov, Y. A., Gdaniec, M., Gerbeleu, N., Filippova, I. G. & Timco, G. A. (2003). Inorg. Chem. Commun. 6, 685–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationBiagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1978). Acta Cryst. B34, 134–137.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J. (2008). Acta Cryst. E64, m1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m262-m263
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds