organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{[(2-(Tri­fluoro­meth­yl)phen­yl]imino­meth­yl}phenol

aDepartment of Textile Engineering, Faculty of Engineering, Pamukkale University, TR-20070 Kınıklı Denizli, Turkey, bDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and cDepartment of Chemical Technonolgy, Pamukkale University, TR-20070 Kınıklı Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 12 January 2012; accepted 25 January 2012; online 4 February 2012)

In the crystal of the title compound, C14H10F3NO, intra­molecular O—H⋯N and O—H⋯F hydrogen bonds generate S(6) and S(10) intramolecular hydrogen-bonded rings. The dihedral angle between the planes of the aromatic rings is 13.00 (14)°.

Related literature

For related structures, see: Odabaşoǧlu et al. (2003[Odabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.], 2005[Odabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425-o426.]); Albayrak et al. (2012[Albayrak, Ç., Odabaşoǧlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85-91.]); Temel et al. (2006[Temel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484-o4486.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For azomethine dye applications, see: Williams (1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]); Elizbarashvili et al. (2007[Elizbarashvili, E., Matitaishvili, T. & Topuria, K. (2007). J. Braz. Chem. Soc. 18, 1254-1258.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]); Ichijima & Kobayashi (2005[Ichijima, S. & Kobayashi, H. (2005). Bull. Chem. Soc. Jpn, 78, 1929-1938.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For the synthesis of the title mol­ecule, see: Odabaşoǧlu et al. (2003[Odabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F3NO

  • Mr = 265.23

  • Orthorhombic, P c a 21

  • a = 17.9907 (18) Å

  • b = 5.0898 (4) Å

  • c = 13.2564 (10) Å

  • V = 1213.88 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.73 × 0.48 × 0.27 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.932, Tmax = 0.966

  • 9185 measured reflections

  • 2519 independent reflections

  • 1827 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.084

  • S = 1.07

  • 1318 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: 1201 measured Friedel pairs were merged, because the compound is a weak anomalous scatterer

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H13⋯N1 0.82 (5) 1.88 (5) 2.622 (3) 149 (4)
O1—H13⋯F3 0.82 (5) 2.58 (4) 3.179 (3) 131 (4)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Most azmethine dyes are known to have biological activities and have been used as antimicrobial, antifungal, antitumor, antitoxic, anti-inflammatory and as herbicides (Williams, 1972; Elizbarashvili et al., 2007). In industry, they have a wide range of applications such as dyes and pigments with luminescent properties (Taggi et al., 2002). Azmethine dyes are known to be among the most important dyes because of their wide applications, including color photographic systems, dye diffusion thermal transfer print systems and others (Ichijima & Kobayashi, 2005). In addition, azmethine dyes have been used widely as ligands in the field of coordination chemistry (Calligaris et al., 1972). o-Hydroxy azmethine dyes are characterized by a strong intramolecular hydrogen bond. These compounds are of interest because of their thermochromism and photochromism in the solid state, which can involve reversible intramolecular proton transfer from an O atom to the neighboring N atom. It was proposed on the basis of thermochromic and photochromic azmethine dyes that the molecules exhibiting thermochromism are planar while the molecules exhibiting photochromism are non-planar (Hadjoudis et al., 1987). Taking in account these important features of the o-hydroxy azomethine dyes, we aimed to investigate the intra- and/or intermolecular interactions and the conformation of the title compound, (E)-2-[(2-(trifluoromethyl)phenylimino)methyl]phenol, by X-ray crystallography.

o-Hydroxy azomethine dyes can exist in three tautomeric structures, as enol (Odabaşoǧlu et al., 2005), keto (Albayrak et al., 2012) and zwitterionic (Temel et al., 2006) forms in the solid state. In the title compound, the enol tautomer is favoured over the keto and zwitterionic forms (Fig. 1 and Table 1), and there is an intramolecular O1—H13···N1 hydrogen bond (Table 2). The molecule is almost planar, with a dihedral angle of 13.00 (14)° between C1···C6 and C8···C13 rings. The O—H···N hydrogen-bonded ring is planar and is coupled with the phenylene ring [dihedral angle is 0.8 (6)°]. The crystal packing is stabilized by O—H···N, O—H···F and C—H···O hydrogen bond interactions. O1—H13···N1 and O1—H13···F3 hydrogen bonds generate S(10) ring motif which includes the S(6) ring (Bernstein et al., 1995). In addition, C10—H10···O1 hydrogen bond generate C(9) chain (Fig. 2) and a three-dimensional network (Fig. 3).

Related literature top

For related structures, see: Odabaşoǧlu et al. (2003, 2005); Albayrak et al. (2012); Temel et al. (2006). For ring motifs, see: Bernstein et al. (1995). For azomethine dye applications, see: Williams (1972); Elizbarashvili et al. (2007); Taggi et al. (2002); Ichijima & Kobayashi (2005); Calligaris et al. (1972); Hadjoudis et al. (1987). For the synthesis of the title molecule, see: Odabaşoǧlu et al. (2003).

Experimental top

The title molecule was prepared as described by Odabaşoǧlu et al. (2003), using 2-trifluoromethylaniline and salicylaldehyde as starting materials. Crystals were obtained from an ethyl alcohol solution by slow evaporation (yield 92%, m.p. 338 K).

Refinement top

H atom bonded to O1 was located in a difference map and refined isotropically. Constrained bond lengths and isotropic U parameters for aromatic C—H: 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with displacement ellipsoids at the 40% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, showing the formation of S(6), S(10) rings and C(9) chain motifs. H atoms not involved in hydrogen bonds have been omitted for clarity [Symmetry code: (i) 1 - x, y - 1, z - 1/2].
[Figure 3] Fig. 3. A packing diagram with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
(E)-2-{[(2-(Trifluoromethyl)phenyl]iminomethyl}phenol top
Crystal data top
C14H10F3NODx = 1.451 Mg m3
Mr = 265.23Melting point: 338 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 15262 reflections
a = 17.9907 (18) Åθ = 1.5–28.0°
b = 5.0898 (4) ŵ = 0.12 mm1
c = 13.2564 (10) ÅT = 296 K
V = 1213.88 (18) Å3Prism, yellow
Z = 40.73 × 0.48 × 0.27 mm
F(000) = 544
Data collection top
Stoe IPDS II
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube1827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 26.5°, θmin = 2.3°
rotation method scansh = 2222
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 66
Tmin = 0.932, Tmax = 0.966l = 1616
9185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
1318 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.15 e Å3
0 constraintsAbsolute structure: 1201 measured Friedel pairs were merged, because the compound is a weak anomalous scatterer
Crystal data top
C14H10F3NOV = 1213.88 (18) Å3
Mr = 265.23Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.9907 (18) ŵ = 0.12 mm1
b = 5.0898 (4) ÅT = 296 K
c = 13.2564 (10) Å0.73 × 0.48 × 0.27 mm
Data collection top
Stoe IPDS II
diffractometer
2519 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1827 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.966Rint = 0.038
9185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.11 e Å3
1318 reflectionsΔρmin = 0.15 e Å3
176 parametersAbsolute structure: 1201 measured Friedel pairs were merged, because the compound is a weak anomalous scatterer
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45358 (12)1.0002 (5)0.7729 (2)0.0617 (6)
C20.43472 (14)1.0230 (5)0.6716 (2)0.0698 (7)
C30.38195 (19)1.2075 (6)0.6431 (3)0.0864 (9)
H30.36891.22370.57550.104*
C40.34888 (18)1.3658 (6)0.7134 (4)0.0915 (11)
H40.31401.48940.69280.110*
C50.36636 (17)1.3453 (6)0.8136 (3)0.0868 (10)
H50.34331.45300.86080.104*
C60.41827 (16)1.1637 (6)0.8435 (3)0.0793 (8)
H60.43021.14860.91150.095*
C70.50948 (15)0.8157 (5)0.8071 (2)0.0648 (6)
H70.52130.81080.87530.078*
C80.59564 (12)0.4792 (5)0.7836 (2)0.0612 (6)
C90.60401 (16)0.4129 (6)0.8843 (3)0.0780 (8)
H90.57280.48950.93190.094*
C100.65715 (18)0.2370 (7)0.9161 (3)0.0885 (9)
H100.66270.20040.98440.106*
C110.70208 (16)0.1155 (6)0.8462 (3)0.0891 (10)
H110.73800.00380.86720.107*
C120.69381 (17)0.1702 (5)0.7458 (3)0.0811 (9)
H120.72350.08450.69870.097*
C130.64133 (14)0.3532 (5)0.7135 (2)0.0644 (7)
C140.63575 (17)0.4148 (6)0.6040 (2)0.0769 (8)
N10.54272 (12)0.6611 (4)0.74774 (15)0.0622 (5)
O10.46592 (15)0.8714 (5)0.60028 (16)0.0918 (7)
F10.68225 (14)0.2715 (5)0.54915 (16)0.1234 (8)
F20.65111 (13)0.6642 (4)0.58376 (16)0.1042 (7)
F30.56880 (12)0.3721 (4)0.56487 (15)0.1069 (7)
H130.496 (3)0.776 (8)0.628 (4)0.107 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0553 (12)0.0619 (14)0.0680 (16)0.0060 (11)0.0034 (13)0.0022 (13)
C20.0679 (15)0.0666 (15)0.0750 (18)0.0014 (13)0.0018 (15)0.0004 (15)
C30.087 (2)0.0808 (19)0.091 (2)0.0044 (16)0.0121 (18)0.0104 (18)
C40.0713 (18)0.0710 (16)0.132 (4)0.0094 (15)0.001 (2)0.005 (2)
C50.0714 (18)0.0773 (19)0.112 (3)0.0054 (15)0.0153 (18)0.0065 (18)
C60.0755 (17)0.0786 (17)0.084 (2)0.0003 (15)0.0129 (16)0.0033 (17)
C70.0632 (14)0.0720 (15)0.0593 (14)0.0052 (13)0.0005 (12)0.0027 (13)
C80.0525 (12)0.0627 (14)0.0683 (16)0.0069 (11)0.0001 (13)0.0031 (13)
C90.0711 (16)0.090 (2)0.0725 (18)0.0070 (15)0.0017 (14)0.0019 (17)
C100.085 (2)0.092 (2)0.088 (2)0.0053 (18)0.0119 (19)0.0170 (18)
C110.0669 (17)0.0803 (19)0.120 (3)0.0050 (14)0.008 (2)0.016 (2)
C120.0658 (16)0.0713 (16)0.106 (3)0.0003 (15)0.0126 (16)0.0036 (18)
C130.0545 (13)0.0611 (13)0.0774 (17)0.0084 (12)0.0061 (12)0.0056 (14)
C140.0745 (17)0.0743 (18)0.082 (2)0.0008 (14)0.0190 (16)0.0080 (16)
N10.0569 (11)0.0677 (11)0.0618 (13)0.0011 (10)0.0009 (9)0.0008 (11)
O10.1086 (16)0.0980 (16)0.0688 (14)0.0250 (14)0.0129 (12)0.0076 (12)
F10.1361 (18)0.1374 (17)0.0967 (15)0.0357 (14)0.0433 (14)0.0107 (13)
F20.1301 (16)0.0950 (13)0.0874 (13)0.0185 (11)0.0113 (11)0.0147 (10)
F30.0988 (13)0.1415 (18)0.0803 (12)0.0191 (11)0.0043 (10)0.0233 (14)
Geometric parameters (Å, º) top
C1—C21.390 (4)C8—C131.397 (4)
C1—C61.404 (4)C8—N11.411 (3)
C1—C71.449 (4)C9—C101.376 (4)
C2—O11.343 (4)C9—H90.9300
C2—C31.388 (4)C10—C111.376 (5)
C3—C41.369 (5)C10—H100.9300
C3—H30.9300C11—C121.368 (5)
C4—C51.368 (6)C11—H110.9300
C4—H40.9300C12—C131.394 (4)
C5—C61.372 (5)C12—H120.9300
C5—H50.9300C13—C141.488 (5)
C6—H60.9300C14—F21.326 (3)
C7—N11.263 (3)C14—F11.327 (4)
C7—H70.9300C14—F31.329 (4)
C8—C91.385 (4)O1—H130.82 (5)
C2—C1—C6119.0 (2)C10—C9—C8121.9 (3)
C2—C1—C7121.7 (2)C10—C9—H9119.0
C6—C1—C7119.3 (3)C8—C9—H9119.0
O1—C2—C3118.9 (3)C9—C10—C11119.7 (3)
O1—C2—C1122.0 (2)C9—C10—H10120.2
C3—C2—C1119.1 (3)C11—C10—H10120.2
C4—C3—C2120.7 (4)C12—C11—C10120.0 (3)
C4—C3—H3119.7C12—C11—H11120.0
C2—C3—H3119.7C10—C11—H11120.0
C5—C4—C3121.1 (3)C11—C12—C13120.6 (3)
C5—C4—H4119.5C11—C12—H12119.7
C3—C4—H4119.5C13—C12—H12119.7
C4—C5—C6119.2 (3)C12—C13—C8120.1 (3)
C4—C5—H5120.4C12—C13—C14119.1 (3)
C6—C5—H5120.4C8—C13—C14120.8 (2)
C5—C6—C1121.0 (3)F2—C14—F1106.5 (2)
C5—C6—H6119.5F2—C14—F3105.4 (3)
C1—C6—H6119.5F1—C14—F3105.5 (3)
N1—C7—C1122.5 (2)F2—C14—C13112.6 (3)
N1—C7—H7118.7F1—C14—C13112.1 (3)
C1—C7—H7118.7F3—C14—C13114.0 (2)
C9—C8—C13117.7 (2)C7—N1—C8121.2 (2)
C9—C8—N1123.9 (2)C2—O1—H13107 (3)
C13—C8—N1118.3 (2)
C6—C1—C2—O1179.5 (2)C10—C11—C12—C131.5 (5)
C7—C1—C2—O11.6 (4)C11—C12—C13—C81.2 (4)
C6—C1—C2—C30.4 (4)C11—C12—C13—C14177.8 (3)
C7—C1—C2—C3178.6 (3)C9—C8—C13—C120.8 (3)
O1—C2—C3—C4180.0 (3)N1—C8—C13—C12179.4 (2)
C1—C2—C3—C40.2 (5)C9—C8—C13—C14179.8 (3)
C2—C3—C4—C50.6 (5)N1—C8—C13—C141.7 (3)
C3—C4—C5—C60.4 (5)C12—C13—C14—F2117.6 (3)
C4—C5—C6—C10.2 (4)C8—C13—C14—F261.4 (3)
C2—C1—C6—C50.6 (4)C12—C13—C14—F12.5 (4)
C7—C1—C6—C5178.4 (2)C8—C13—C14—F1178.5 (2)
C2—C1—C7—N11.9 (4)C12—C13—C14—F3122.3 (3)
C6—C1—C7—N1179.2 (2)C8—C13—C14—F358.7 (3)
C13—C8—C9—C102.5 (4)C1—C7—N1—C8178.5 (2)
N1—C8—C9—C10179.0 (3)C9—C8—N1—C714.7 (4)
C8—C9—C10—C112.2 (5)C13—C8—N1—C7166.9 (2)
C9—C10—C11—C120.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H13···N10.82 (5)1.88 (5)2.622 (3)149 (4)
O1—H13···F30.82 (5)2.58 (4)3.179 (3)131 (4)
C10—H10···O1i0.932.803.342 (5)118
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10F3NO
Mr265.23
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)17.9907 (18), 5.0898 (4), 13.2564 (10)
V3)1213.88 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.73 × 0.48 × 0.27
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.932, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
9185, 2519, 1827
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.07
No. of reflections1318
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.15
Absolute structure1201 measured Friedel pairs were merged, because the compound is a weak anomalous scatterer

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H13···N10.82 (5)1.88 (5)2.622 (3)149 (4)
O1—H13···F30.82 (5)2.58 (4)3.179 (3)131 (4)
C10—H10···O1i0.932.803.342 (5)118.2
Symmetry code: (i) x+1, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlbayrak, Ç., Odabaşoǧlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85–91.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationElizbarashvili, E., Matitaishvili, T. & Topuria, K. (2007). J. Braz. Chem. Soc. 18, 1254–1258.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationIchijima, S. & Kobayashi, H. (2005). Bull. Chem. Soc. Jpn, 78, 1929–1938.  Web of Science CrossRef CAS Google Scholar
First citationOdabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTemel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484–o4486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds