organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­benzo­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 January 2012; accepted 26 January 2012; online 4 February 2012)

The asymmetric unit of the title compound, C14H12N2O5S, contains two independent mol­ecules. The dihedral angles between the aromatic rings are 82.03 (9) and 79.47 (8)° in the two independent mol­ecules. In the crystal, the two mol­ecules in the asymmetric unit are linked into dimers via pairs of N—H⋯O(S) hydrogen bonds to generate C(4) chains.

Related literature

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(ar­yl)amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 61, 801-806.]). For N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]). For N-(ar­yl)aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For N-(sub­stituted benzo­yl)aryl­sulfonamides, see: Suchetan et al. (2012[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o462.]). For N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]). For N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O5S

  • Mr = 320.32

  • Triclinic, [P \overline 1]

  • a = 10.860 (1) Å

  • b = 11.716 (2) Å

  • c = 12.841 (2) Å

  • α = 114.51 (2)°

  • β = 102.99 (2)°

  • γ = 91.16 (1)°

  • V = 1436.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.44 × 0.44 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.898, Tmax = 0.942

  • 8993 measured reflections

  • 5772 independent reflections

  • 4069 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.116

  • S = 1.06

  • 5772 reflections

  • 405 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2 0.85 (1) 2.30 (1) 3.141 (3) 168 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999, 2003), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005); N-(substitutedbenzoyl)-arylsulfonamides (Suchetan et al., 2012); N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-methylbenzoyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig.1).

The asymmetric unit of the structure contains two independent molecules. In one of the molecules, the N—C bond in the C—SO2—NH—C segment has gauche torsion with respect to the SO bonds. The conformation between the N—H and C=O bonds in the C—SO2—NH—C(O) segments are anti. Further, the conformations between the N—H bonds and the ortho-nitro groups in the sulfonyl benzene rings are syn, similar to that observed in N-(3-methylbenzoyl)- 2-nitrobenzenesulfonamide (II)(Suchetan et al., 2012).

The molecules are twisted at the S—N bonds with the torsional angles of 64.42 (25)° and -55.37 (245)°, compared to the value of 64.32 (20)° in (II).

The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 76.73 (8)° and 79.47 (8)°, compared to the value of 75.7 (1)° in (II). Furthermore, the dihedral angles between the sulfonyl and the benzoyl benzene rings are 82.03 (9)° and 79.47 (8)°, compared to the value of 89.5 (1)° in (II).

In the crystal, the intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(aryl)amides, see: Bowes et al. (2003); Gowda et al. (1999, 2003). For N-(aryl)methanesulfonamides, see: Gowda et al. (2007). For N-(aryl)arylsulfonamides, see: Shetty & Gowda (2005). For N-(substitutedbenzoyl)arylsulfonamides, see: Suchetan et al. (2012). For N-chloroarylamides, see: Jyothi & Gowda (2004). For N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of p-methylbenzoic acid (0.02 mole), 2-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(4-methylbenzoyl)-2-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(4-Methylbenzoyl)-2-nitrobenzenesulfonamide top
Crystal data top
C14H12N2O5SZ = 4
Mr = 320.32F(000) = 664
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.860 (1) ÅCell parameters from 3497 reflections
b = 11.716 (2) Åθ = 2.6–27.7°
c = 12.841 (2) ŵ = 0.25 mm1
α = 114.51 (2)°T = 293 K
β = 102.99 (2)°Prism, colourless
γ = 91.16 (1)°0.44 × 0.44 × 0.24 mm
V = 1436.6 (4) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5772 independent reflections
Radiation source: fine-focus sealed tube4069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.898, Tmax = 0.942k = 1214
8993 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0321P)2 + 1.1761P]
where P = (Fo2 + 2Fc2)/3
5772 reflections(Δ/σ)max = 0.018
405 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H12N2O5Sγ = 91.16 (1)°
Mr = 320.32V = 1436.6 (4) Å3
Triclinic, P1Z = 4
a = 10.860 (1) ÅMo Kα radiation
b = 11.716 (2) ŵ = 0.25 mm1
c = 12.841 (2) ÅT = 293 K
α = 114.51 (2)°0.44 × 0.44 × 0.24 mm
β = 102.99 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5772 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4069 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.942Rint = 0.016
8993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
5772 reflectionsΔρmin = 0.31 e Å3
405 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0965 (2)0.5718 (2)0.3025 (2)0.0424 (6)
C20.1921 (3)0.5564 (2)0.2042 (3)0.0485 (6)
C30.3051 (3)0.6057 (3)0.2163 (3)0.0642 (9)
H30.36960.59330.14980.077*
C40.3212 (3)0.6736 (3)0.3285 (4)0.0713 (10)
H40.39590.70950.33750.086*
C50.2284 (3)0.6885 (3)0.4263 (3)0.0661 (9)
H50.24050.73330.50150.079*
C60.1166 (3)0.6369 (3)0.4134 (3)0.0505 (7)
H60.05410.64620.48020.061*
C70.1874 (2)0.7296 (3)0.3702 (2)0.0467 (6)
C80.2763 (2)0.8070 (2)0.3448 (2)0.0428 (6)
C90.2955 (3)0.9366 (3)0.4126 (3)0.0587 (8)
H90.25290.97300.47140.070*
C100.3781 (3)1.0120 (3)0.3926 (3)0.0659 (9)
H100.38981.09900.43840.079*
C110.4436 (3)0.9617 (3)0.3068 (3)0.0545 (7)
C120.4233 (3)0.8330 (3)0.2396 (3)0.0525 (7)
H120.46560.79710.18050.063*
C130.3409 (3)0.7557 (3)0.2582 (2)0.0473 (6)
H130.32920.66880.21210.057*
C140.5351 (3)1.0447 (3)0.2876 (3)0.0790 (10)
H14A0.61151.07200.35090.095*
H14B0.49661.11720.28610.095*
H14C0.55560.99790.21360.095*
N10.1440 (2)0.6072 (2)0.2821 (2)0.0488 (5)
H1N0.157 (3)0.583 (3)0.2132 (13)0.059*
N20.1779 (3)0.4904 (3)0.0836 (3)0.0704 (8)
O10.09629 (18)0.4991 (2)0.40379 (19)0.0633 (6)
O20.02871 (19)0.39485 (17)0.18596 (19)0.0601 (5)
O30.1506 (2)0.7687 (2)0.45992 (18)0.0659 (6)
O40.0976 (3)0.5353 (3)0.0563 (2)0.0944 (8)
O50.2522 (4)0.3971 (3)0.0170 (2)0.1311 (13)
S10.04803 (6)0.50626 (6)0.29466 (7)0.04812 (18)
C150.4933 (2)0.2942 (2)0.1683 (2)0.0380 (5)
C160.5306 (2)0.3732 (2)0.2893 (2)0.0414 (6)
C170.6504 (2)0.3816 (3)0.3571 (2)0.0468 (6)
H170.67400.43620.43740.056*
C180.7355 (3)0.3071 (3)0.3037 (3)0.0503 (7)
H180.81710.31150.34850.060*
C190.7009 (3)0.2267 (3)0.1852 (3)0.0507 (7)
H190.75850.17570.15060.061*
C200.5805 (3)0.2213 (2)0.1172 (2)0.0477 (6)
H200.55830.16830.03650.057*
C210.2377 (3)0.0971 (2)0.0854 (2)0.0479 (6)
C220.1465 (2)0.0519 (2)0.1349 (2)0.0457 (6)
C230.1197 (3)0.0777 (3)0.0968 (3)0.0570 (7)
H230.15560.13340.03920.068*
C240.0401 (3)0.1238 (3)0.1443 (3)0.0623 (8)
H240.02220.21080.11680.075*
C250.0139 (3)0.0445 (3)0.2314 (3)0.0572 (7)
C260.0137 (3)0.0836 (3)0.2686 (3)0.0613 (8)
H260.02170.13910.32680.074*
C270.0925 (3)0.1320 (3)0.2217 (3)0.0560 (7)
H270.10930.21910.24870.067*
C280.0969 (3)0.0950 (3)0.2860 (4)0.0813 (10)
H28A0.05140.14780.31750.098*
H28B0.17280.14370.22670.098*
H28C0.11970.02570.34860.098*
N30.2353 (2)0.2211 (2)0.0981 (2)0.0467 (5)
H3N0.185 (2)0.269 (2)0.133 (2)0.056*
N40.4405 (2)0.4484 (2)0.3514 (2)0.0524 (6)
O60.3190 (2)0.42572 (18)0.11978 (19)0.0637 (6)
O70.3564 (2)0.2349 (2)0.04299 (17)0.0708 (6)
O80.3129 (2)0.03374 (18)0.0378 (2)0.0677 (6)
O90.3422 (2)0.3918 (2)0.34577 (19)0.0780 (7)
O100.4714 (2)0.5617 (2)0.4097 (2)0.0713 (6)
S20.34704 (7)0.29805 (7)0.07566 (6)0.04910 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (14)0.0388 (13)0.0565 (16)0.0053 (11)0.0140 (12)0.0266 (12)
C20.0499 (16)0.0463 (15)0.0566 (17)0.0015 (12)0.0095 (13)0.0316 (14)
C30.0475 (17)0.076 (2)0.083 (2)0.0057 (15)0.0037 (16)0.055 (2)
C40.0478 (18)0.091 (2)0.103 (3)0.0269 (17)0.0312 (19)0.062 (2)
C50.060 (2)0.075 (2)0.078 (2)0.0204 (17)0.0329 (18)0.0380 (19)
C60.0441 (15)0.0573 (17)0.0577 (18)0.0087 (13)0.0150 (13)0.0309 (14)
C70.0390 (14)0.0520 (16)0.0475 (16)0.0079 (12)0.0113 (12)0.0198 (13)
C80.0377 (13)0.0456 (15)0.0452 (15)0.0063 (11)0.0072 (11)0.0214 (12)
C90.0572 (18)0.0503 (17)0.0599 (19)0.0060 (14)0.0195 (15)0.0132 (14)
C100.068 (2)0.0407 (16)0.081 (2)0.0025 (15)0.0139 (18)0.0211 (16)
C110.0503 (16)0.0547 (17)0.0661 (19)0.0029 (13)0.0075 (14)0.0373 (15)
C120.0562 (17)0.0580 (17)0.0555 (17)0.0113 (14)0.0205 (14)0.0329 (15)
C130.0536 (16)0.0420 (14)0.0487 (16)0.0073 (12)0.0136 (13)0.0216 (12)
C140.079 (2)0.073 (2)0.100 (3)0.0053 (19)0.018 (2)0.054 (2)
N10.0477 (13)0.0477 (13)0.0526 (14)0.0023 (10)0.0190 (11)0.0202 (12)
N20.084 (2)0.0717 (19)0.0577 (18)0.0124 (16)0.0071 (16)0.0360 (16)
O10.0498 (12)0.0827 (15)0.0815 (15)0.0207 (11)0.0173 (11)0.0576 (13)
O20.0604 (13)0.0395 (10)0.0803 (15)0.0126 (9)0.0240 (11)0.0224 (10)
O30.0666 (14)0.0700 (14)0.0563 (13)0.0036 (11)0.0273 (11)0.0171 (11)
O40.0899 (19)0.132 (2)0.0839 (19)0.0306 (18)0.0437 (16)0.0570 (18)
O50.191 (4)0.098 (2)0.0616 (18)0.042 (2)0.013 (2)0.0194 (16)
S10.0431 (4)0.0460 (4)0.0649 (5)0.0112 (3)0.0174 (3)0.0311 (3)
C150.0444 (14)0.0359 (13)0.0373 (13)0.0020 (11)0.0130 (11)0.0180 (11)
C160.0447 (14)0.0406 (14)0.0440 (15)0.0077 (11)0.0192 (12)0.0189 (12)
C170.0442 (15)0.0498 (15)0.0416 (15)0.0018 (12)0.0118 (12)0.0150 (12)
C180.0403 (15)0.0529 (16)0.0591 (18)0.0062 (12)0.0140 (13)0.0249 (14)
C190.0490 (16)0.0483 (15)0.0584 (18)0.0124 (13)0.0251 (14)0.0205 (14)
C200.0583 (17)0.0423 (14)0.0434 (15)0.0048 (12)0.0208 (13)0.0153 (12)
C210.0466 (15)0.0353 (14)0.0478 (16)0.0053 (12)0.0049 (12)0.0081 (12)
C220.0418 (14)0.0371 (13)0.0495 (15)0.0060 (11)0.0019 (12)0.0152 (12)
C230.0618 (18)0.0384 (15)0.0591 (18)0.0053 (13)0.0095 (15)0.0128 (13)
C240.068 (2)0.0386 (15)0.071 (2)0.0025 (14)0.0025 (17)0.0222 (15)
C250.0461 (16)0.0550 (17)0.069 (2)0.0004 (13)0.0009 (14)0.0326 (16)
C260.0589 (18)0.0525 (17)0.076 (2)0.0148 (14)0.0243 (16)0.0271 (16)
C270.0614 (18)0.0370 (14)0.071 (2)0.0116 (13)0.0217 (16)0.0219 (14)
C280.072 (2)0.077 (2)0.099 (3)0.0049 (19)0.017 (2)0.046 (2)
N30.0446 (13)0.0407 (12)0.0497 (14)0.0066 (10)0.0092 (10)0.0160 (11)
N40.0483 (14)0.0625 (16)0.0407 (13)0.0112 (12)0.0136 (11)0.0155 (12)
O60.0703 (14)0.0520 (12)0.0798 (15)0.0140 (10)0.0135 (11)0.0415 (11)
O70.0799 (15)0.0911 (16)0.0404 (11)0.0088 (13)0.0109 (10)0.0296 (11)
O80.0688 (14)0.0444 (11)0.0808 (15)0.0134 (10)0.0312 (12)0.0119 (10)
O90.0462 (12)0.0970 (18)0.0665 (15)0.0018 (12)0.0232 (11)0.0081 (13)
O100.0874 (16)0.0527 (13)0.0704 (15)0.0213 (12)0.0374 (13)0.0138 (11)
S20.0561 (4)0.0505 (4)0.0443 (4)0.0073 (3)0.0089 (3)0.0258 (3)
Geometric parameters (Å, º) top
C1—C61.379 (4)C15—C201.381 (3)
C1—C21.385 (4)C15—C161.394 (3)
C1—S11.766 (3)C15—S21.771 (3)
C2—C31.380 (4)C16—C171.370 (4)
C2—N21.462 (4)C16—N41.474 (3)
C3—C41.380 (5)C17—C181.381 (4)
C3—H30.9300C17—H170.9300
C4—C51.366 (5)C18—C191.372 (4)
C4—H40.9300C18—H180.9300
C5—C61.379 (4)C19—C201.383 (4)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—O31.214 (3)C21—O81.210 (3)
C7—N11.395 (3)C21—N31.395 (3)
C7—C81.487 (4)C21—C221.486 (4)
C8—C131.380 (4)C22—C271.384 (4)
C8—C91.384 (4)C22—C231.389 (4)
C9—C101.381 (4)C23—C241.379 (4)
C9—H90.9300C23—H230.9300
C10—C111.378 (4)C24—C251.384 (4)
C10—H100.9300C24—H240.9300
C11—C121.374 (4)C25—C261.376 (4)
C11—C141.505 (4)C25—C281.503 (4)
C12—C131.386 (4)C26—C271.382 (4)
C12—H120.9300C26—H260.9300
C13—H130.9300C27—H270.9300
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
N1—S11.641 (2)N3—S21.642 (2)
N1—H1N0.855 (10)N3—H3N0.853 (10)
N2—O41.196 (4)N4—O101.216 (3)
N2—O51.207 (4)N4—O91.216 (3)
O1—S11.419 (2)O6—S21.430 (2)
O2—S11.429 (2)O7—S21.420 (2)
C6—C1—C2118.7 (2)C20—C15—C16118.1 (2)
C6—C1—S1117.4 (2)C20—C15—S2118.89 (19)
C2—C1—S1123.8 (2)C16—C15—S2122.58 (19)
C3—C2—C1120.9 (3)C17—C16—C15122.1 (2)
C3—C2—N2116.8 (3)C17—C16—N4116.7 (2)
C1—C2—N2122.3 (3)C15—C16—N4121.2 (2)
C2—C3—C4119.1 (3)C16—C17—C18118.6 (2)
C2—C3—H3120.4C16—C17—H17120.7
C4—C3—H3120.4C18—C17—H17120.7
C5—C4—C3120.6 (3)C19—C18—C17120.8 (3)
C5—C4—H4119.7C19—C18—H18119.6
C3—C4—H4119.7C17—C18—H18119.6
C4—C5—C6119.9 (3)C18—C19—C20120.1 (3)
C4—C5—H5120.0C18—C19—H19120.0
C6—C5—H5120.0C20—C19—H19120.0
C1—C6—C5120.6 (3)C15—C20—C19120.4 (2)
C1—C6—H6119.7C15—C20—H20119.8
C5—C6—H6119.7C19—C20—H20119.8
O3—C7—N1120.4 (2)O8—C21—N3119.8 (3)
O3—C7—C8123.6 (3)O8—C21—C22123.9 (2)
N1—C7—C8116.0 (2)N3—C21—C22116.3 (2)
C13—C8—C9118.8 (3)C27—C22—C23118.3 (3)
C13—C8—C7123.2 (2)C27—C22—C21123.5 (2)
C9—C8—C7118.0 (2)C23—C22—C21118.1 (3)
C10—C9—C8119.9 (3)C24—C23—C22120.2 (3)
C10—C9—H9120.0C24—C23—H23119.9
C8—C9—H9120.0C22—C23—H23119.9
C11—C10—C9121.8 (3)C23—C24—C25122.0 (3)
C11—C10—H10119.1C23—C24—H24119.0
C9—C10—H10119.1C25—C24—H24119.0
C12—C11—C10117.8 (3)C26—C25—C24117.3 (3)
C12—C11—C14121.0 (3)C26—C25—C28120.9 (3)
C10—C11—C14121.2 (3)C24—C25—C28121.8 (3)
C11—C12—C13121.3 (3)C25—C26—C27121.8 (3)
C11—C12—H12119.3C25—C26—H26119.1
C13—C12—H12119.3C27—C26—H26119.1
C8—C13—C12120.4 (3)C26—C27—C22120.5 (3)
C8—C13—H13119.8C26—C27—H27119.7
C12—C13—H13119.8C22—C27—H27119.7
C11—C14—H14A109.5C25—C28—H28A109.5
C11—C14—H14B109.5C25—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C11—C14—H14C109.5C25—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
C7—N1—S1123.28 (19)C21—N3—S2123.47 (19)
C7—N1—H1N121 (2)C21—N3—H3N122 (2)
S1—N1—H1N115 (2)S2—N3—H3N113.1 (19)
O4—N2—O5124.6 (3)O10—N4—O9124.0 (2)
O4—N2—C2118.1 (3)O10—N4—C16118.3 (2)
O5—N2—C2117.2 (3)O9—N4—C16117.5 (2)
O1—S1—O2119.62 (13)O7—S2—O6119.71 (14)
O1—S1—N1109.89 (13)O7—S2—N3110.46 (13)
O2—S1—N1104.51 (12)O6—S2—N3104.21 (12)
O1—S1—C1106.60 (13)O7—S2—C15107.13 (13)
O2—S1—C1109.45 (13)O6—S2—C15107.80 (12)
N1—S1—C1106.06 (12)N3—S2—C15106.88 (11)
C6—C1—C2—C30.4 (4)C20—C15—C16—C171.0 (4)
S1—C1—C2—C3177.3 (2)S2—C15—C16—C17171.2 (2)
C6—C1—C2—N2179.0 (3)C20—C15—C16—N4176.5 (2)
S1—C1—C2—N24.1 (4)S2—C15—C16—N411.3 (3)
C1—C2—C3—C41.5 (4)C15—C16—C17—C181.3 (4)
N2—C2—C3—C4177.2 (3)N4—C16—C17—C18176.3 (2)
C2—C3—C4—C52.1 (5)C16—C17—C18—C190.1 (4)
C3—C4—C5—C60.9 (5)C17—C18—C19—C201.3 (4)
C2—C1—C6—C51.6 (4)C16—C15—C20—C190.5 (4)
S1—C1—C6—C5178.7 (2)S2—C15—C20—C19173.0 (2)
C4—C5—C6—C10.9 (5)C18—C19—C20—C151.7 (4)
O3—C7—C8—C13164.3 (3)O8—C21—C22—C27157.4 (3)
N1—C7—C8—C1317.4 (4)N3—C21—C22—C2721.4 (4)
O3—C7—C8—C915.1 (4)O8—C21—C22—C2318.9 (4)
N1—C7—C8—C9163.2 (3)N3—C21—C22—C23162.3 (2)
C13—C8—C9—C100.1 (4)C27—C22—C23—C240.7 (4)
C7—C8—C9—C10179.5 (3)C21—C22—C23—C24177.1 (3)
C8—C9—C10—C110.4 (5)C22—C23—C24—C251.0 (5)
C9—C10—C11—C120.7 (5)C23—C24—C25—C260.8 (5)
C9—C10—C11—C14178.8 (3)C23—C24—C25—C28177.8 (3)
C10—C11—C12—C130.8 (4)C24—C25—C26—C270.3 (5)
C14—C11—C12—C13178.8 (3)C28—C25—C26—C27178.3 (3)
C9—C8—C13—C120.1 (4)C25—C26—C27—C220.0 (5)
C7—C8—C13—C12179.5 (2)C23—C22—C27—C260.2 (4)
C11—C12—C13—C80.5 (4)C21—C22—C27—C26176.4 (3)
O3—C7—N1—S13.1 (4)O8—C21—N3—S212.4 (4)
C8—C7—N1—S1178.58 (18)C22—C21—N3—S2166.47 (19)
C3—C2—N2—O4114.8 (3)C17—C16—N4—O1055.5 (3)
C1—C2—N2—O463.9 (4)C15—C16—N4—O10126.9 (3)
C3—C2—N2—O562.0 (4)C17—C16—N4—O9120.9 (3)
C1—C2—N2—O5119.3 (3)C15—C16—N4—O956.8 (3)
C7—N1—S1—O150.4 (3)C21—N3—S2—O760.8 (3)
C7—N1—S1—O2180.0 (2)C21—N3—S2—O6169.4 (2)
C7—N1—S1—C164.4 (2)C21—N3—S2—C1555.4 (2)
C6—C1—S1—O119.2 (2)C20—C15—S2—O78.7 (2)
C2—C1—S1—O1157.8 (2)C16—C15—S2—O7163.4 (2)
C6—C1—S1—O2149.9 (2)C20—C15—S2—O6138.8 (2)
C2—C1—S1—O227.1 (3)C16—C15—S2—O633.3 (2)
C6—C1—S1—N197.9 (2)C20—C15—S2—N3109.7 (2)
C2—C1—S1—N185.1 (2)C16—C15—S2—N378.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.85 (1)2.30 (1)3.141 (3)168 (3)

Experimental details

Crystal data
Chemical formulaC14H12N2O5S
Mr320.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.860 (1), 11.716 (2), 12.841 (2)
α, β, γ (°)114.51 (2), 102.99 (2), 91.16 (1)
V3)1436.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.44 × 0.44 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.898, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
8993, 5772, 4069
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 1.06
No. of reflections5772
No. of parameters405
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.853 (10)2.303 (12)3.141 (3)168 (3)
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC-BSR one-time grant to faculty.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 61, 801–806.  Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds