organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o623-o624

(E)-N-(1-Benzo­thio­phen-3-yl­methyl­­idene)-2,6-di­methyl­aniline

aKırıkkale University, Faculty of Arts and Sciences, Physics Department, 71450 Kırıkkale, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and dGiresun University, Faculty of Arts and Sciences, Department of Physics, 28100 Giresun, Turkey
*Correspondence e-mail: necmisamsun@gmail.com

(Received 26 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title compound, C17H15NS, the benzothio­phene residue and the substituted benzene ring are oriented at a dihedral angle of 61.99 (7)°. An inter­molecular C—H⋯π inter­action contributes to the stability of the crystal structure.

Related literature

For the biological properties of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.]). For industrial applications of Schiff bases, see: Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For chemical properties of Schiff bases, see: Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Tanak et al. (2010[Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577-587.]); Ingold (1969[Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.]). For related structures, see: Ağar et al. (2010[Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.]); Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]); Dege, Şekerci et al. (2006[Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103-108.]); Demirtaş et al. (2009[Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.]); Dege, Içbudak & Adıyaman (2006[Dege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401-m403.], 2007[Dege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13-m15.]); Genç et al. (2004[Genç, S., Dege, N., Yılmaz, I., Çukurovalı, A. & Dinçer, M. (2004). Acta Cryst. E60, e10.]); İnaç et al. (2012[Inaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.]); Tecer et al. (2010[Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369-o3370.]). For the structural properties benzothiophene derivatives, see: Alarcon et al. (1999[Alarcon, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233-240.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Inamoto et al. (2008[Inamoto, K., Arai, Y., Hiroya, K. & Doi, T. (2008). Chem. Commun. pp. 5529-5531.]); Köysal et al. (2007[Köysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.]); Karabıyık et al. (2008[Karabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130-136.]); Kobayashi et al. (2009[Kobayashi, K., Egara, Y., Fukamachi, S. & Konishi, H. (2009). Tetrahedron, 65, 9633-9636.]); Mlochowski & Potaczek (2009[Mlochowski, J. & Potaczek, P. (2009). Phosphorus Sulfur Slicon Relat. Elem. 184, 1115-1123.]); Novopoltseva (1995[Novopoltseva, O. M. (1995). Cand. Sci. (Chem.) dissertation, University of Volgograd, Russia.]); Tanak et al. (2010[Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577-587.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]); Zhang et al. (2001[Zhang, Y., Guo, Z. J. & You, X. Z. (2001). J. Am. Chem. Soc. 123, 9378-9387.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NS

  • Mr = 265.36

  • Monoclinic, P 21

  • a = 8.0446 (10) Å

  • b = 8.8031 (9) Å

  • c = 10.2809 (10) Å

  • β = 98.989 (11)°

  • V = 719.12 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.965, Tmax = 0.975

  • 2788 measured reflections

  • 2024 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.05

  • 2024 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 497 Friedel pairs

  • Flack parameter: 0.10 (11)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg2i 0.93 2.95 3.872 (4) 171
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: OLEX2, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiophene derivatives are undoubtedly one of the most important classes of heterocycles, because some of molecules having the benzothiophene skeleton have been reported to axhibit wide variety of biological activities (Kobayashi et al., 2009). Therefore, we (İnaç et al. 2012) and others (İnamoto et al., 2008; Mlochowski & Potaczek, 2009) have recently reported efficient methods for the synthesis of benzothiophenes. However, there are only a few reports on the synthesis of 1-(benzo[b]thiophen-3-yl)-N-methylmethanamines, which may also be of potential biological importance.

Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton & Ollis, 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). They are also used as components of rubber compounds (Novopoltseva, 1995). Schiff base compounds display interesting photochromic and thermochromic features in the solid state and can be classified in terms of these properties (Cohen et al., 1964). Photo- and thermochromism arise via H-atom transfer from the hydroxy O atom to the imine N atom (Hadjoudis et al., 1987;Xu et al., 1994). Such proton-exchanging materials can be utilized for the design of various molecular electronic devices (Alarcon et al., 1999). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Köysal et al., 2007) and N—H···O in keto-amine tautomers. By means of increasing development of computational chemistry in the past decade, the research of theoretical modeling of drug design, functional material design, etc., has become more mature than ever. Many important chemical and physical properties of biological and chemical systems can be predicted from the first principles by various computational techniques (Zhang et al., 2001). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001).

The molecular structure is not planar (Fig.1); the dihedral angle between the C10—C17 benzene and the C1—C8/S1 benzothiophene ring is 61.99 (7)°. The dihedral angle between the methylenemethanamine and bezothiophene group is 3.22 (50)°. The length of the C9=N1 double bond is 1.260 (3) Å, slightly shorter than standard 1.28 Å value of a C=N double bond and consistent with related structures (Ağar et al., 2010; Ceylan et al. 2011; Dege, Şekerci et al., 2006; Genç et al. 2004; İnaç et al., 2012; Tanak et al., 2010; Tecer et al., 2010).

The C1—S1 and C8—S1 bond distances are 1.736 (3) Å and 1.717 (3) Å, respectively. The C—S bond distances are compatible with the literature (Dege, Içbudak & Adıyaman, 2006, 2007; Demirtaş et al., 2009).

The crystal structure is stabilized by an intermolecular C—H···π stacking interaction (C9—H9···Cg2i = 2.95 Å) [symmetry code (i): -x, -1/2 + y, 1 - z; Cg2 is the centroids of ring C1—C6].

Related literature top

For the biological properties of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969). For industrial applications of Schiff bases, see: Taggi et al. (2002). For chemical properties of Schiff bases, see: Aydoğan et al. (2001); Tanak et al. (2010); Ingold (1969). For related structures, see: Ağar et al. (2010); Ceylan et al. (2011); Dege, Şekerci et al. (2006); Demirtaş et al. (2009); Dege, Içbudak & Adıyaman (2006, 2007); Genç et al. (2004); İnaç et al. (2012); Tecer et al. (2010). For related literature [please be more specifice, as above], see: Alarcon et al. (1999); Cohen et al. (1964); Hadjoudis et al. (1987); Inamoto et al. (2008); Köysal et al. (2007); Karabıyık et al. (2008); Kobayashi et al. (2009); Mlochowski & Potaczek (2009); Novopoltseva (1995); Tanak et al. (2010); Xu et al. (1994); Zhang et al. (2001).

Experimental top

The compound (E)-1-(1-benzothiophen-3-yl)-N-(2,6-dimethylphenyl)methanimine was prepared by reflux a mixture of a solution containing 1-benzothiophene-3-carbaldehyde (0.026 g 0.16 mmol) in 20 ml e thanol and a solution containing 2,6-Dimethylaniline (0.0192 g 0.16 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 2(E)-1-(1-benzothiophen-3-yl)-N-(2,6-dimethylphenyl)methanimine suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 58; m.p 75–77°C).

Refinement top

All hydrogen atoms were positioned geometrically [C—H=0.930 and 0.960] and treated as riding with Uiso(H)=1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
(E)-N-(1-Benzothiophen-3-ylmethylidene)-2,6-dimethylaniline top
Crystal data top
C17H15NSF(000) = 280
Mr = 265.36Dx = 1.225 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1387 reflections
a = 8.0446 (10) Åθ = 3.5–27.3°
b = 8.8031 (9) ŵ = 0.21 mm1
c = 10.2809 (10) ÅT = 296 K
β = 98.989 (11)°Prism, brown
V = 719.12 (14) Å30.17 × 0.15 × 0.12 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
2024 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1722 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 16.0454 pixels mm-1θmax = 27.4°, θmin = 3.5°
ω scansh = 105
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 511
Tmin = 0.965, Tmax = 0.975l = 1013
2788 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1075P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2024 reflectionsΔρmax = 0.15 e Å3
174 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 497 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (11)
Crystal data top
C17H15NSV = 719.12 (14) Å3
Mr = 265.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.0446 (10) ŵ = 0.21 mm1
b = 8.8031 (9) ÅT = 296 K
c = 10.2809 (10) Å0.17 × 0.15 × 0.12 mm
β = 98.989 (11)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
2024 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1722 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.975Rint = 0.021
2788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.15 e Å3
S = 1.05Δρmin = 0.23 e Å3
2024 reflectionsAbsolute structure: Flack (1983), 497 Friedel pairs
174 parametersAbsolute structure parameter: 0.10 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82893 (13)0.27137 (12)0.24201 (7)0.0801 (3)
N10.9883 (3)0.2484 (3)0.7306 (2)0.0511 (6)
C101.0962 (3)0.1995 (3)0.8467 (2)0.0491 (7)
C70.9176 (4)0.2495 (4)0.4948 (2)0.0565 (7)
C60.7680 (3)0.3424 (3)0.4760 (2)0.0453 (6)
C111.0246 (4)0.1127 (4)0.9370 (3)0.0567 (8)
C50.6838 (4)0.4137 (4)0.5683 (3)0.0560 (8)
H50.72220.40280.65790.067*
C20.5615 (4)0.4471 (4)0.2995 (3)0.0659 (9)
H20.52100.45850.21030.079*
C131.2877 (5)0.1134 (5)1.0815 (3)0.0766 (11)
H131.35280.08461.16050.092*
C151.2650 (4)0.2449 (4)0.8730 (3)0.0590 (8)
C10.7043 (4)0.3622 (3)0.3416 (3)0.0551 (8)
C91.0162 (4)0.2036 (4)0.6197 (3)0.0575 (8)
H91.10540.13700.61730.069*
C141.3571 (4)0.2000 (5)0.9925 (4)0.0784 (12)
H141.46920.22941.01290.094*
C30.4813 (5)0.5139 (5)0.3930 (3)0.0772 (11)
H30.38350.56960.36710.093*
C121.1233 (4)0.0697 (4)1.0539 (3)0.0695 (9)
H121.07710.01051.11410.083*
C40.5443 (4)0.4995 (5)0.5254 (3)0.0698 (10)
H40.49040.54940.58690.084*
C80.9607 (5)0.2058 (4)0.3779 (3)0.0772 (11)
H81.05390.14520.37200.093*
C170.8439 (4)0.0649 (6)0.9089 (4)0.0854 (12)
H17A0.77410.15280.88800.128*
H17B0.81350.01550.98500.128*
H17C0.82820.00400.83570.128*
C161.3420 (5)0.3460 (6)0.7799 (4)0.0923 (12)
H16A1.35830.28880.70330.138*
H16C1.44850.38340.82310.138*
H16B1.26810.43000.75380.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1139 (8)0.0853 (7)0.0394 (4)0.0236 (6)0.0066 (4)0.0016 (5)
N10.0541 (12)0.0557 (15)0.0416 (11)0.0048 (12)0.0016 (10)0.0060 (12)
C100.0502 (14)0.0525 (17)0.0424 (14)0.0067 (14)0.0003 (12)0.0035 (13)
C70.0698 (18)0.0563 (19)0.0427 (13)0.0091 (16)0.0063 (13)0.0045 (15)
C60.0565 (15)0.0399 (15)0.0375 (13)0.0026 (13)0.0012 (11)0.0045 (12)
C110.0616 (17)0.065 (2)0.0417 (15)0.0004 (16)0.0021 (13)0.0005 (15)
C50.0612 (18)0.062 (2)0.0426 (15)0.0031 (16)0.0024 (13)0.0041 (15)
C20.078 (2)0.065 (2)0.0483 (16)0.0040 (18)0.0110 (16)0.0069 (16)
C130.073 (2)0.099 (3)0.0517 (18)0.025 (2)0.0101 (17)0.003 (2)
C150.0512 (16)0.064 (2)0.0607 (16)0.0009 (16)0.0049 (14)0.0074 (18)
C10.075 (2)0.0468 (17)0.0405 (15)0.0068 (16)0.0007 (14)0.0026 (13)
C90.0655 (18)0.058 (2)0.0466 (15)0.0141 (16)0.0024 (14)0.0058 (14)
C140.0481 (16)0.100 (3)0.082 (2)0.0119 (19)0.0083 (17)0.025 (2)
C30.075 (2)0.085 (3)0.066 (2)0.020 (2)0.0052 (18)0.008 (2)
C120.083 (2)0.074 (2)0.0495 (18)0.015 (2)0.0025 (17)0.0097 (18)
C40.069 (2)0.081 (3)0.058 (2)0.0190 (19)0.0062 (17)0.0024 (18)
C80.098 (3)0.081 (3)0.0517 (18)0.028 (2)0.0096 (17)0.0013 (18)
C170.072 (2)0.114 (3)0.068 (2)0.025 (2)0.0046 (19)0.016 (2)
C160.077 (2)0.099 (3)0.102 (3)0.019 (2)0.020 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C81.717 (3)C13—C121.363 (5)
S1—C11.736 (3)C13—C141.375 (5)
N1—C91.260 (3)C13—H130.9300
N1—C101.428 (3)C15—C141.390 (4)
C10—C111.395 (4)C15—C161.509 (5)
C10—C151.400 (4)C9—H90.9300
C7—C81.357 (4)C14—H140.9300
C7—C61.442 (4)C3—C41.382 (5)
C7—C91.456 (4)C3—H30.9300
C6—C51.398 (4)C12—H120.9300
C6—C11.407 (3)C4—H40.9300
C11—C121.386 (4)C8—H80.9300
C11—C171.497 (4)C17—H17A0.9600
C5—C41.367 (4)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C2—C31.371 (5)C16—H16A0.9600
C2—C11.382 (4)C16—H16C0.9600
C2—H20.9300C16—H16B0.9600
C8—S1—C190.84 (15)N1—C9—H9117.9
C9—N1—C10119.5 (2)C7—C9—H9117.9
C11—C10—C15121.1 (2)C13—C14—C15122.0 (3)
C11—C10—N1117.4 (2)C13—C14—H14119.0
C15—C10—N1121.3 (3)C15—C14—H14119.0
C8—C7—C6111.4 (2)C2—C3—C4120.7 (3)
C8—C7—C9121.5 (3)C2—C3—H3119.6
C6—C7—C9127.1 (2)C4—C3—H3119.6
C5—C6—C1118.0 (3)C13—C12—C11120.6 (3)
C5—C6—C7130.2 (2)C13—C12—H12119.7
C1—C6—C7111.7 (2)C11—C12—H12119.7
C12—C11—C10119.1 (3)C5—C4—C3121.6 (3)
C12—C11—C17119.9 (3)C5—C4—H4119.2
C10—C11—C17121.0 (3)C3—C4—H4119.2
C4—C5—C6119.3 (3)C7—C8—S1114.5 (3)
C4—C5—H5120.3C7—C8—H8122.7
C6—C5—H5120.3S1—C8—H8122.7
C3—C2—C1118.2 (3)C11—C17—H17A109.5
C3—C2—H2120.9C11—C17—H17B109.5
C1—C2—H2120.9H17A—C17—H17B109.5
C12—C13—C14120.0 (3)C11—C17—H17C109.5
C12—C13—H13120.0H17A—C17—H17C109.5
C14—C13—H13120.0H17B—C17—H17C109.5
C14—C15—C10117.2 (3)C15—C16—H16A109.5
C14—C15—C16120.9 (3)C15—C16—H16C109.5
C10—C15—C16121.8 (3)H16A—C16—H16C109.5
C2—C1—C6122.1 (3)C15—C16—H16B109.5
C2—C1—S1126.4 (2)H16A—C16—H16B109.5
C6—C1—S1111.5 (2)H16C—C16—H16B109.5
N1—C9—C7124.2 (3)
C9—N1—C10—C11117.4 (3)C5—C6—C1—S1177.9 (2)
C9—N1—C10—C1566.6 (4)C7—C6—C1—S11.2 (3)
C8—C7—C6—C5178.2 (3)C8—S1—C1—C2179.8 (3)
C9—C7—C6—C51.9 (6)C8—S1—C1—C61.0 (2)
C8—C7—C6—C10.7 (4)C10—N1—C9—C7178.1 (3)
C9—C7—C6—C1179.2 (3)C8—C7—C9—N1175.4 (4)
C15—C10—C11—C120.7 (5)C6—C7—C9—N14.7 (5)
N1—C10—C11—C12176.8 (3)C12—C13—C14—C150.4 (6)
C15—C10—C11—C17179.7 (3)C10—C15—C14—C130.6 (5)
N1—C10—C11—C173.6 (5)C16—C15—C14—C13177.2 (4)
C1—C6—C5—C40.2 (5)C1—C2—C3—C41.5 (6)
C7—C6—C5—C4178.7 (3)C14—C13—C12—C110.5 (6)
C11—C10—C15—C140.1 (5)C10—C11—C12—C131.0 (5)
N1—C10—C15—C14175.8 (3)C17—C11—C12—C13179.4 (4)
C11—C10—C15—C16176.6 (3)C6—C5—C4—C32.0 (6)
N1—C10—C15—C160.7 (5)C2—C3—C4—C52.7 (6)
C3—C2—C1—C60.3 (5)C6—C7—C8—S10.1 (4)
C3—C2—C1—S1178.4 (3)C9—C7—C8—S1180.0 (3)
C5—C6—C1—C21.0 (4)C1—S1—C8—C70.7 (3)
C7—C6—C1—C2180.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the (C1-C6) ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.953.872 (4)171
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NS
Mr265.36
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.0446 (10), 8.8031 (9), 10.2809 (10)
β (°) 98.989 (11)
V3)719.12 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.965, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2788, 2024, 1722
Rint0.021
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.05
No. of reflections2024
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.23
Absolute structureFlack (1983), 497 Friedel pairs
Absolute structure parameter0.10 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the (C1-C6) ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.953.872 (4)171
Symmetry code: (i) x, y1/2, z+1.
 

Acknowledgements

The authors thank Ondokuz Mayis University, Giresun University and Kırıkkale University, Turkey, for financial support of this study.

References

First citationAğar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772.  Google Scholar
First citationAlarcon, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240.  Google Scholar
First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401–m403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13–m15.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103–108.  CAS Google Scholar
First citationDemirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGenç, S., Dege, N., Yılmaz, I., Çukurovalı, A. & Dinçer, M. (2004). Acta Cryst. E60, e10.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationInaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInamoto, K., Arai, Y., Hiroya, K. & Doi, T. (2008). Chem. Commun. pp. 5529–5531.  Web of Science CrossRef Google Scholar
First citationIngold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationKarabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130–136.  Google Scholar
First citationKobayashi, K., Egara, Y., Fukamachi, S. & Konishi, H. (2009). Tetrahedron, 65, 9633–9636.  Web of Science CrossRef CAS Google Scholar
First citationKöysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationMlochowski, J. & Potaczek, P. (2009). Phosphorus Sulfur Slicon Relat. Elem. 184, 1115–1123.  CAS Google Scholar
First citationNovopoltseva, O. M. (1995). Cand. Sci. (Chem.) dissertation, University of Volgograd, Russia.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369–o3370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, Y., Guo, Z. J. & You, X. Z. (2001). J. Am. Chem. Soc. 123, 9378–9387.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o623-o624
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds