organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(Di­methyl­amino)­prop­yl]-N′-(2-hy­dr­oxy-5-methyl­phen­yl)oxamide

aMarine Drug and Food Institute, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China, and bKey Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
*Correspondence e-mail: yantuanli@ouc.edu.cn

(Received 19 February 2012; accepted 22 February 2012; online 29 February 2012)

In the title compound, C14H21N3O3, the oxamide group has a transoid conformation. In the crystal, the mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into a double chain running along the b axis.

Related literature

For the use of N,N′-bis­(substituted)oxamides in the synthesis of nuclear complexes, see: Ojima & Nonoyama (1988[Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-111.]); Ruiz et al. (1999[Ruiz, R., Faus, J., Lloret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.]). For related compounds, see: Han et al. (2007[Han, Y.-T., Li, Y.-T., Wu, Z.-Y., Sun, W. & Zhu, C.-Y. (2007). Acta Cryst. E63, o3945.]); Martinez et al. (1998[Martinez, F. J. M., Martinez, I. I. P., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]); Yue et al. (2012[Yue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N3O3

  • Mr = 279.34

  • Monoclinic, P 21 /c

  • a = 11.542 (2) Å

  • b = 10.304 (2) Å

  • c = 13.860 (3) Å

  • β = 109.16 (3)°

  • V = 1557.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.27 × 0.24 × 0.17 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.986

  • 7686 measured reflections

  • 3099 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.022

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.02

  • 3099 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.92 (3) 2.13 (3) 2.945 (2) 147 (2)
O1—H1A⋯N3ii 0.90 (2) 1.76 (2) 2.654 (2) 168 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N,N'-bis(substituented)oxamides as multiatom bridging ligands has played an important role in designing and synthesizing polymetallic systems (Ojima & Nonoyama, 1988; Ruiz et al., 1999). Due to the difficulties of synthesis only few dissymmetrical bis-substituented-oxamide ligand has been reported. In order to provide more examples of such ligand, quite recently, we reported the structure of (3-{[N-(5-Chloro-2-hydroxyphenyl)oxamoyl]amino}propyl)dimethylazanium perchlorate (Yue et al.,2012). In continuation of our earlier work, the title compound was synthesized and its structure is reported here.

As shown in Fig. 1, the title compound has a trans-conformation of the oxamide group. The whole compound likes the alphabet `L'. The benzene ring is almost coplanar to the oxamide group [11.44 (9)°], just like that in the compound of N,N'-bis(2-Hydroxyphenyl)oxamide (Martinez et al., 1998). However, the plane through the other substituent group, aminopropyl, is perpendicular to the oxamide plane [83.49 (12)°]. The torsion angle of C9—N2—C10—C11 is 106.7 (2)° (Table 1). And the conformation for the C10—C11 bond is gauche. While in the compound 2-(N'-[3-(Dimethylammonio)propyl)oxamido]benzoate (Han et al., 2007), the corresponding angle is 151.3 (3)° and the conformation is anti.

A centrosymmetric dimer of a pair of the compounds is formed via the hydrogen bonds of the oxamide groups (Fig. 2, Table 2). These dimers are further assembled to a chain parallel to the b-axis through the hydrogen bonds between the phenolic hydroxyl groups and the tertiary amino groups.

Related literature top

For the use of N,N'-bis(substituted)oxamides in designing and synthesizing polymetallic systems, see: Ojima & Nonoyama (1988); Ruiz et al. (1999). For related compounds, see: Han et al. (2007); Martinez et al. (1998); Yue et al. (2012). [Please check amended text]

Experimental top

All reagents were of AR grade and obtained commercially without further purification. The title compound was prepared according to the method proposed by Han et al. (2007). A tetrahydrofuran (THF) solution (8 ml) of ethyl oxalyl chloride (1.11 ml, 10 mmol) was added dropwise into a THF solution (50 ml) of 2-amino-4-methylphenol (1.23 g, 10 mmol) with continuous stirring. The mixture was stirred quickly for 1 h and became clear. Then 20 ml ethanol was further added and the mixture was added dropwise into the solution (10 ml) of 3-dimethylamino-propylamine (1.02 g, 10 mmol) with stirring and kept the temperature at 273 K for 9 h. The title compound was precipitated as a white powder and washed with ethanol for several times and dried under vacuum. Yield: 1.83 g (66%). Colourless crystals of compound with the suitable size for X-ray analysis were obtained from an ethanol/water (1:1) mixture by slow evaporation for one week at room temperature.

Anal. Calcd. for C14H21N3O3 (%): C, 60.20; H, 7.58; N, 15.04. Found: C, 60.33; H, 7.65; N, 15.00.

Refinement top

All H atoms were found in a difference Fourier map. Those bonded to N and O were freely refined with the O1—H1A bond restrained to a length of 0.86 (2) Å. Other H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl), and refined using a riding model with Uiso(H) = 1.2UeqC or 1.5UeqC(methyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The displacement ellipsoids are drawn at the 30% probability levels and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of a hydrogen bonding chain extending along the b-axis. [Symmetry codes: i = -x + 1, -y, -z; ii = x, y + 1, z.]
N-[3-(Dimethylamino)propyl]-N'-(2-hydroxy-5- methylphenyl)ethanediamide top
Crystal data top
C14H21N3O3F(000) = 600
Mr = 279.34Dx = 1.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2107 reflections
a = 11.542 (2) Åθ = 2.5–23.3°
b = 10.304 (2) ŵ = 0.09 mm1
c = 13.860 (3) ÅT = 296 K
β = 109.16 (3)°Block, colourless
V = 1557.2 (5) Å30.27 × 0.24 × 0.17 mm
Z = 4
Data collection top
Bruker APEX
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 614
Tmin = 0.977, Tmax = 0.986k = 1212
7686 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.068P)2 + 0.3954P]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C14H21N3O3V = 1557.2 (5) Å3
Mr = 279.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.542 (2) ŵ = 0.09 mm1
b = 10.304 (2) ÅT = 296 K
c = 13.860 (3) Å0.27 × 0.24 × 0.17 mm
β = 109.16 (3)°
Data collection top
Bruker APEX
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2093 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.986Rint = 0.022
7686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
3099 reflectionsΔρmin = 0.26 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78563 (15)0.54467 (14)0.12601 (15)0.0756 (5)
O20.52711 (14)0.16017 (13)0.05547 (12)0.0675 (4)
O30.81264 (15)0.18892 (16)0.01920 (14)0.0812 (5)
N10.66500 (17)0.32727 (16)0.08912 (13)0.0551 (4)
N20.67544 (19)0.02499 (17)0.02835 (13)0.0606 (5)
N30.92876 (16)0.24706 (17)0.16828 (17)0.0720 (6)
C10.67333 (18)0.54785 (18)0.13783 (15)0.0535 (5)
C20.60784 (17)0.43098 (17)0.12124 (14)0.0491 (5)
C30.49425 (19)0.4244 (2)0.13394 (15)0.0574 (5)
H3A0.45210.34590.12350.069*
C40.4419 (2)0.5333 (2)0.16214 (16)0.0623 (5)
C50.5060 (2)0.6490 (2)0.17547 (15)0.0617 (6)
H50.47150.72340.19270.074*
C60.62038 (19)0.65640 (19)0.16368 (15)0.0587 (5)
H60.66180.73530.17330.070*
C70.3173 (2)0.5254 (3)0.1756 (3)0.0982 (9)
H7A0.32240.47150.23330.147*
H7B0.25930.48900.11520.147*
H7C0.29120.61090.18670.147*
C80.62327 (18)0.20947 (18)0.05512 (14)0.0522 (5)
C90.7136 (2)0.1393 (2)0.01338 (15)0.0568 (5)
C100.7491 (3)0.0559 (2)0.07135 (18)0.0756 (7)
H10A0.81540.00440.07980.091*
H10B0.69870.08570.13840.091*
C110.8022 (2)0.1719 (2)0.00525 (19)0.0739 (7)
H11A0.85230.22100.03650.089*
H11B0.73580.22770.00220.089*
C120.8800 (2)0.1347 (2)0.10290 (19)0.0692 (6)
H12A0.94780.08120.09990.083*
H12B0.83060.08330.13330.083*
C131.0343 (3)0.3023 (3)0.1486 (4)0.1352 (16)
H13A1.06390.37540.19270.203*
H13B1.09790.23810.16130.203*
H13C1.01120.32990.07870.203*
C140.9619 (3)0.2082 (3)0.2779 (2)0.1081 (10)
H14A1.02340.14160.29260.162*
H14B0.99330.28220.32060.162*
H14C0.89040.17590.29080.162*
H10.732 (2)0.343 (2)0.0811 (16)0.062 (7)*
H20.599 (2)0.003 (2)0.0308 (18)0.078 (8)*
H1A0.824 (2)0.622 (2)0.139 (2)0.109 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (10)0.0484 (9)0.1234 (14)0.0114 (7)0.0397 (10)0.0126 (9)
O20.0639 (9)0.0513 (8)0.0878 (11)0.0137 (7)0.0256 (8)0.0038 (7)
O30.0699 (11)0.0702 (10)0.1088 (13)0.0180 (9)0.0365 (10)0.0231 (9)
N10.0503 (10)0.0458 (9)0.0663 (11)0.0055 (8)0.0153 (9)0.0007 (8)
N20.0644 (12)0.0522 (10)0.0612 (11)0.0056 (9)0.0152 (9)0.0059 (8)
N30.0500 (10)0.0522 (10)0.1121 (16)0.0014 (8)0.0245 (10)0.0097 (10)
C10.0525 (11)0.0476 (11)0.0571 (11)0.0021 (9)0.0134 (9)0.0028 (9)
C20.0503 (11)0.0444 (10)0.0477 (10)0.0003 (8)0.0094 (8)0.0034 (8)
C30.0544 (12)0.0572 (12)0.0576 (12)0.0071 (9)0.0142 (10)0.0030 (9)
C40.0556 (12)0.0699 (14)0.0602 (12)0.0021 (11)0.0176 (10)0.0001 (10)
C50.0642 (13)0.0608 (13)0.0562 (12)0.0106 (11)0.0144 (10)0.0013 (10)
C60.0639 (13)0.0459 (11)0.0620 (12)0.0015 (9)0.0147 (10)0.0016 (9)
C70.0717 (17)0.106 (2)0.128 (2)0.0018 (16)0.0483 (17)0.0125 (19)
C80.0538 (12)0.0433 (10)0.0524 (11)0.0039 (9)0.0078 (9)0.0045 (8)
C90.0580 (12)0.0503 (11)0.0562 (11)0.0054 (10)0.0109 (10)0.0010 (9)
C100.1010 (19)0.0682 (14)0.0629 (14)0.0081 (13)0.0340 (13)0.0143 (11)
C110.0895 (17)0.0542 (13)0.0863 (16)0.0011 (12)0.0402 (14)0.0182 (12)
C120.0598 (13)0.0476 (11)0.0948 (17)0.0030 (10)0.0182 (12)0.0023 (11)
C130.0772 (19)0.096 (2)0.253 (5)0.0301 (17)0.083 (3)0.056 (3)
C140.097 (2)0.096 (2)0.100 (2)0.0002 (17)0.0096 (17)0.0116 (17)
Geometric parameters (Å, º) top
O1—C11.359 (3)C5—H50.9300
O2—C81.222 (2)C6—H60.9300
O3—C91.231 (2)C7—H7A0.9600
N1—C21.403 (3)C7—H7B0.9600
N1—C81.334 (2)C7—H7C0.9600
N2—C91.322 (3)C8—C91.530 (3)
O1—H1A0.904 (17)C10—C111.509 (3)
N1—H10.83 (2)C10—H10A0.9700
N2—C101.451 (3)C10—H10B0.9700
N2—H20.92 (3)C11—C121.522 (3)
N3—C131.450 (3)C11—H11A0.9700
N3—C121.464 (3)C11—H11B0.9700
N3—C141.494 (4)C12—H12A0.9700
C1—C61.377 (3)C12—H12B0.9700
C1—C21.400 (3)C13—H13A0.9600
C2—C31.381 (3)C13—H13B0.9600
C3—C41.390 (3)C13—H13C0.9600
C3—H3A0.9300C14—H14A0.9600
C4—C51.383 (3)C14—H14B0.9600
C4—C71.511 (3)C14—H14C0.9600
C5—C61.385 (3)
C1—O1—H1A112.6 (18)O2—C8—C9122.52 (18)
C8—N1—C2130.73 (19)N1—C8—C9110.60 (18)
C8—N1—H1112.0 (15)O3—C9—N2124.6 (2)
C2—N1—H1116.6 (15)O3—C9—C8120.83 (19)
C9—N2—C10122.4 (2)N2—C9—C8114.58 (19)
C9—N2—H2118.2 (16)N2—C10—C11112.48 (19)
C10—N2—H2119.4 (16)N2—C10—H10A109.1
C13—N3—C12111.7 (2)C11—C10—H10A109.1
C13—N3—C14110.2 (3)N2—C10—H10B109.1
C12—N3—C14109.6 (2)C11—C10—H10B109.1
O1—C1—C6124.96 (18)H10A—C10—H10B107.8
O1—C1—C2116.38 (17)C10—C11—C12112.92 (18)
C6—C1—C2118.66 (19)C10—C11—H11A109.0
C3—C2—C1120.35 (18)C12—C11—H11A109.0
C3—C2—N1124.63 (17)C10—C11—H11B109.0
C1—C2—N1114.99 (18)C12—C11—H11B109.0
C2—C3—C4120.99 (19)H11A—C11—H11B107.8
C2—C3—H3A119.5N3—C12—C11113.16 (18)
C4—C3—H3A119.5N3—C12—H12A108.9
C5—C4—C3118.1 (2)C11—C12—H12A108.9
C5—C4—C7121.2 (2)N3—C12—H12B108.9
C3—C4—C7120.7 (2)C11—C12—H12B108.9
C4—C5—C6121.34 (19)H12A—C12—H12B107.8
C4—C5—H5119.3N3—C13—H13A109.5
C6—C5—H5119.3N3—C13—H13B109.5
C1—C6—C5120.51 (19)H13A—C13—H13B109.5
C1—C6—H6119.7N3—C13—H13C109.5
C5—C6—H6119.7H13A—C13—H13C109.5
C4—C7—H7A109.5H13B—C13—H13C109.5
C4—C7—H7B109.5N3—C14—H14A109.5
H7A—C7—H7B109.5N3—C14—H14B109.5
C4—C7—H7C109.5H14A—C14—H14B109.5
H7A—C7—H7C109.5N3—C14—H14C109.5
H7B—C7—H7C109.5H14A—C14—H14C109.5
O2—C8—N1126.9 (2)H14B—C14—H14C109.5
C8—N1—C2—C37.4 (3)O1—C1—C6—C5178.97 (19)
C8—N1—C2—C1170.86 (19)C2—C1—C6—C51.6 (3)
C9—N2—C10—C11106.7 (2)C4—C5—C6—C10.2 (3)
N2—C10—C11—C1257.1 (3)C2—N1—C8—O29.1 (3)
O1—C1—C2—C3178.43 (18)C2—N1—C8—C9170.82 (19)
C6—C1—C2—C32.1 (3)C10—N2—C9—O30.8 (3)
O1—C1—C2—N13.2 (3)C10—N2—C9—C8179.59 (18)
C6—C1—C2—N1176.24 (17)O2—C8—C9—O3176.04 (19)
C1—C2—C3—C40.8 (3)N1—C8—C9—O34.0 (3)
N1—C2—C3—C4177.40 (19)O2—C8—C9—N24.3 (3)
C2—C3—C4—C51.1 (3)N1—C8—C9—N2175.62 (17)
C2—C3—C4—C7179.8 (2)C13—N3—C12—C1178.6 (3)
C3—C4—C5—C61.6 (3)C14—N3—C12—C11158.9 (2)
C7—C4—C5—C6179.7 (2)C10—C11—C12—N3178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.92 (3)2.13 (3)2.945 (2)147 (2)
O1—H1A···N3ii0.90 (2)1.76 (2)2.654 (2)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H21N3O3
Mr279.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.542 (2), 10.304 (2), 13.860 (3)
β (°) 109.16 (3)
V3)1557.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.24 × 0.17
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7686, 3099, 2093
Rint0.022
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.02
No. of reflections3099
No. of parameters196
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.359 (3)N1—C21.403 (3)
O2—C81.222 (2)N1—C81.334 (2)
O3—C91.231 (2)N2—C91.322 (3)
C8—N1—C2—C37.4 (3)C9—N2—C10—C11106.7 (2)
C8—N1—C2—C1170.86 (19)N2—C10—C11—C1257.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.92 (3)2.13 (3)2.945 (2)147 (2)
O1—H1A···N3ii0.904 (17)1.764 (18)2.654 (2)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of China (grant No. 21071133) and the Natural Science Foundation of Qingdao City.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, Y.-T., Li, Y.-T., Wu, Z.-Y., Sun, W. & Zhu, C.-Y. (2007). Acta Cryst. E63, o3945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartinez, F. J. M., Martinez, I. I. P., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.  Google Scholar
First citationOjima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–111.  CrossRef CAS Web of Science Google Scholar
First citationRuiz, R., Faus, J., Lloret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193–195, 1069–1117.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds