organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis[(S)-1-phenyl­eth­yl]-1H,5H-pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetrone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 February 2012; accepted 20 February 2012; online 29 February 2012)

In the title compound, C26H20N2O4, the central isoindole core is almost planar (r.m.s. deviation = 0.043 Å). The phenyl rings lie to either side of the plane [dihedral angles = 88.64 (5) and 67.74 (6)°] and the dihedral angle between the phenyl rings is 63.39 (7)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions; notably, one carbonyl O atom accepts three such bonds.

Related literature

For the biological activity of cyclic imides including that of the title compound, see: Abdel-Aziz (2007[Abdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614-626.]); Abdel-Aziz, El-Azab et al. (2011[Abdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011). Eur. J. Med. Chem. 46, 4324-4329.]); Abdel-Aziz, ElTahir et al. (2011[Abdel-Aziz, A. A.-M., ElTahir, K. E. H. & Asiri, Y. A. (2011). Eur. J. Med. Chem. 46, 1648-1655.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O4

  • Mr = 424.44

  • Monoclinic, P 21

  • a = 5.6401 (1) Å

  • b = 16.1040 (2) Å

  • c = 11.3759 (2) Å

  • β = 99.762 (2)°

  • V = 1018.29 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.656, Tmax = 1.000

  • 7858 measured reflections

  • 4093 independent reflections

  • 4091 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.099

  • S = 1.11

  • 4093 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1898 Friedel pairs

  • Flack parameter: 0.08 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.50 3.4129 (16) 162
C7—H7⋯O4ii 1.00 2.49 3.1840 (16) 126
C20—H20C⋯O1iii 0.98 2.56 3.4948 (17) 161
C23—H23⋯O1iv 0.95 2.57 3.4847 (18) 161
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) [-x, y-{\script{1\over 2}}, -z+1]; (iv) [-x-1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent work has shown that cyclic imides possess important biological potential, such as anti-hyperlipidemic, anti-diabetic, anti-tumour and anti-inflammatory activities (Abdel-Aziz, 2007; Abdel-Aziz, El-Azab et al., 2011; Abdel-Aziz, ElTahir et al., 2011). The title cyclic imide, 2,6-bis((S)-1-phenylethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone (I), was investigated during these trials and herein the crystal structure determination is described.

In (I), Fig. 1, the 12 atoms comprising the isoindole core are co-planar with a r.m.s. deviation for the fitted atoms of 0.043 Å. The maximum deviations from this least-squares plane are 0.043 (1) Å for the C15 and C16 atoms, and -0.058 (1) Å for the N2 atom. The phenyl rings lie to either side of the plane, forming dihedral angles of 88.64 (5)° [C1–C6] and 67.74 (6)° [C21–C26]; the dihedral angle between the phenyl rings = 63.39 (7)°.

Molecules are assembled in the crystal structure by C–H···O interactions, Fig. 2 and Table 1. Notably, one carbonyl-O atom is involved in a trifurcated H bond.

Related literature top

For the biological activity of cyclic imides including that of the title compound, see: Abdel-Aziz (2007); Abdel-Aziz, El-Azab et al. (2011); Abdel-Aziz, ElTahir et al. (2011).

Experimental top

A solution of (+)-(S)-1-phenylethanamine (10 mmol) and benzene-1,2,4,5-tetracarboxylic dianhydride (10 mmol) in glacial acetic acid (10 ml) was heated under reflux for 12 h. After the evaporation of the reaction mixture to dryness under reduced pressure, the residue was neutralized using sodium bicarbonate solution (4%) until effervescence ceased. The precipitate obtained was washed with water, dried and recrystallized from MeOH/CHCl3 (1:1 v/v). Yield 59%. M.pt: > 623 K. 1H NMR (CDCl3): δ 8.20 (s, 2H, Ar—H), 7.53–7.51 (d, 4H, J = 7.0 Hz, Ar—H), 7.38–7.35 (t, 4H, J = 7.0 Hz, Ar—H), 7.32–7.28 (q, 2H, J = 8.0 Hz, Ar—H), 5.62–5.61 (d, 2H, J = 6.0 Hz, 2CH), 1.98–1.96 (d, 6H, J = 6.0 Hz, 2CH3). 13C NMR (CDCl3): δ 166.02, 139.52, 137.05, 128.64, 128.07, 127.49, 118.19, 50.52, 17.41.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The absolute configuration was determined from 1898 Friedel pairs, and was that of the starting reactant.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The C—H···O interactions are shown as orange dashed lines.
2,6-Bis[(S)-1-phenylethyl]-1H,5H- pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetrone top
Crystal data top
C26H20N2O4F(000) = 444
Mr = 424.44Dx = 1.384 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 6911 reflections
a = 5.6401 (1) Åθ = 2.7–76.5°
b = 16.1040 (2) ŵ = 0.77 mm1
c = 11.3759 (2) ÅT = 100 K
β = 99.762 (2)°Prism, colourless
V = 1018.29 (3) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4093 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4091 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 3.9°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2020
Tmin = 0.656, Tmax = 1.000l = 1413
7858 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.0806P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4093 reflectionsΔρmax = 0.24 e Å3
289 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C26H20N2O4V = 1018.29 (3) Å3
Mr = 424.44Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.6401 (1) ŵ = 0.77 mm1
b = 16.1040 (2) ÅT = 100 K
c = 11.3759 (2) Å0.30 × 0.25 × 0.20 mm
β = 99.762 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4093 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4091 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 1.000Rint = 0.018
7858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.24 e Å3
S = 1.11Δρmin = 0.25 e Å3
4093 reflectionsAbsolute structure: Flack (1983), 1898 Friedel pairs
289 parametersAbsolute structure parameter: 0.08 (12)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21322 (17)0.49962 (6)0.84958 (9)0.0190 (2)
O20.52962 (18)0.42601 (6)1.05125 (9)0.0204 (2)
O30.18870 (17)0.21623 (6)0.51186 (8)0.0194 (2)
O40.55058 (17)0.13790 (6)0.71548 (9)0.0198 (2)
N10.1580 (2)0.48014 (7)0.97059 (10)0.0157 (2)
N20.1824 (2)0.15891 (7)0.59322 (10)0.0154 (2)
C10.1785 (2)0.63194 (8)0.97086 (11)0.0156 (3)
C20.0123 (3)0.69641 (9)0.96693 (13)0.0197 (3)
H20.11510.69241.01160.024*
C30.0320 (3)0.76653 (9)0.89804 (14)0.0224 (3)
H30.08290.80990.89540.027*
C40.2184 (3)0.77357 (9)0.83304 (13)0.0214 (3)
H40.23270.82190.78700.026*
C50.3837 (2)0.70929 (10)0.83595 (12)0.0212 (3)
H50.51060.71330.79090.025*
C60.3636 (2)0.63922 (9)0.90455 (12)0.0184 (3)
H60.47760.59560.90630.022*
C70.1695 (2)0.55439 (8)1.04732 (11)0.0158 (3)
H70.32700.55171.10290.019*
C80.0248 (3)0.55292 (10)1.12469 (13)0.0211 (3)
H8A0.01500.50071.16960.032*
H8B0.18310.55731.07400.032*
H8C0.00170.59981.18040.032*
C90.0287 (2)0.46074 (8)0.87821 (11)0.0153 (3)
C100.0478 (2)0.38325 (8)0.82149 (12)0.0146 (3)
C110.2743 (2)0.36088 (8)0.88183 (11)0.0142 (3)
C120.3478 (2)0.42320 (8)0.97899 (12)0.0150 (3)
C130.4002 (2)0.29243 (8)0.85060 (11)0.0147 (3)
H130.55380.27670.89270.018*
C140.2814 (2)0.24907 (8)0.75224 (12)0.0141 (2)
C150.0553 (2)0.27140 (8)0.69167 (11)0.0144 (3)
C160.0710 (2)0.33948 (9)0.72418 (12)0.0151 (3)
H160.22580.35470.68310.018*
C170.0107 (2)0.21467 (8)0.58745 (12)0.0150 (3)
C180.3646 (2)0.17566 (8)0.68996 (11)0.0146 (2)
C190.2125 (2)0.09707 (8)0.50044 (12)0.0158 (3)
H190.37190.06980.52680.019*
C200.2275 (3)0.14171 (9)0.38372 (12)0.0201 (3)
H20A0.35340.18430.39780.030*
H20B0.07260.16800.35330.030*
H20C0.26620.10160.32510.030*
C210.0229 (2)0.02911 (8)0.49308 (12)0.0164 (3)
C220.1846 (3)0.02927 (9)0.40638 (12)0.0189 (3)
H220.21020.07270.34910.023*
C230.3546 (3)0.03401 (9)0.40349 (13)0.0207 (3)
H230.49490.03360.34400.025*
C240.3199 (3)0.09748 (9)0.48692 (14)0.0218 (3)
H240.43740.13990.48570.026*
C250.1120 (3)0.09870 (9)0.57237 (14)0.0249 (3)
H250.08620.14250.62910.030*
C260.0579 (3)0.03601 (10)0.57488 (12)0.0217 (3)
H260.20000.03750.63320.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0176 (4)0.0184 (5)0.0201 (5)0.0040 (4)0.0006 (3)0.0031 (4)
O20.0200 (5)0.0155 (5)0.0229 (5)0.0003 (4)0.0038 (4)0.0023 (4)
O30.0173 (5)0.0189 (5)0.0201 (5)0.0021 (4)0.0022 (4)0.0031 (4)
O40.0201 (5)0.0184 (5)0.0195 (4)0.0061 (4)0.0005 (4)0.0008 (4)
N10.0179 (5)0.0116 (6)0.0170 (5)0.0003 (4)0.0013 (4)0.0026 (4)
N20.0164 (5)0.0135 (5)0.0156 (5)0.0013 (4)0.0009 (4)0.0017 (4)
C10.0153 (6)0.0133 (6)0.0173 (6)0.0007 (5)0.0001 (4)0.0050 (5)
C20.0197 (6)0.0158 (7)0.0245 (7)0.0008 (5)0.0064 (5)0.0033 (5)
C30.0242 (7)0.0131 (6)0.0280 (7)0.0039 (5)0.0011 (6)0.0022 (5)
C40.0260 (7)0.0161 (7)0.0199 (6)0.0032 (5)0.0022 (5)0.0006 (5)
C50.0212 (7)0.0234 (7)0.0188 (6)0.0040 (6)0.0032 (5)0.0036 (5)
C60.0162 (6)0.0180 (7)0.0207 (6)0.0017 (5)0.0023 (5)0.0042 (5)
C70.0182 (6)0.0119 (6)0.0168 (6)0.0008 (5)0.0014 (4)0.0041 (5)
C80.0243 (7)0.0191 (6)0.0208 (6)0.0041 (5)0.0060 (5)0.0033 (5)
C90.0183 (6)0.0127 (6)0.0146 (6)0.0019 (5)0.0023 (5)0.0004 (5)
C100.0161 (6)0.0115 (6)0.0163 (6)0.0001 (5)0.0030 (5)0.0006 (5)
C110.0154 (6)0.0125 (6)0.0141 (6)0.0028 (5)0.0012 (5)0.0012 (5)
C120.0173 (6)0.0108 (6)0.0169 (6)0.0020 (5)0.0024 (5)0.0011 (5)
C130.0146 (6)0.0136 (6)0.0155 (6)0.0009 (5)0.0015 (4)0.0013 (5)
C140.0159 (6)0.0112 (6)0.0155 (5)0.0007 (5)0.0030 (4)0.0037 (5)
C150.0150 (6)0.0129 (6)0.0149 (6)0.0019 (5)0.0014 (4)0.0004 (4)
C160.0145 (6)0.0133 (6)0.0166 (6)0.0009 (5)0.0004 (4)0.0011 (4)
C170.0163 (6)0.0125 (6)0.0160 (6)0.0002 (5)0.0025 (4)0.0013 (5)
C180.0156 (6)0.0143 (6)0.0139 (6)0.0013 (5)0.0028 (4)0.0018 (5)
C190.0169 (6)0.0144 (6)0.0163 (6)0.0015 (5)0.0033 (4)0.0046 (5)
C200.0235 (6)0.0193 (7)0.0180 (6)0.0019 (5)0.0045 (5)0.0021 (5)
C210.0196 (6)0.0133 (6)0.0162 (6)0.0019 (5)0.0027 (5)0.0035 (5)
C220.0204 (6)0.0148 (6)0.0205 (6)0.0022 (5)0.0007 (5)0.0004 (5)
C230.0184 (6)0.0190 (7)0.0232 (7)0.0014 (5)0.0011 (5)0.0039 (5)
C240.0239 (6)0.0157 (7)0.0260 (7)0.0019 (5)0.0046 (5)0.0024 (5)
C250.0316 (7)0.0196 (7)0.0223 (7)0.0027 (6)0.0012 (6)0.0040 (5)
C260.0238 (7)0.0203 (7)0.0189 (6)0.0003 (6)0.0024 (5)0.0005 (5)
Geometric parameters (Å, º) top
O1—C91.2111 (17)C10—C161.3855 (19)
O2—C121.2017 (16)C10—C111.3915 (18)
O3—C171.2062 (16)C11—C131.3897 (19)
O4—C181.2049 (16)C11—C121.4984 (18)
N1—C91.3911 (16)C13—C141.3909 (18)
N1—C121.4004 (17)C13—H130.9500
N1—C71.4754 (16)C14—C151.3902 (18)
N2—C181.3986 (16)C14—C181.4941 (18)
N2—C171.4046 (16)C15—C161.3913 (18)
N2—C191.4815 (16)C15—C171.4930 (17)
C1—C61.3928 (18)C16—H160.9500
C1—C21.3945 (18)C19—C211.5222 (19)
C1—C71.5276 (18)C19—C201.5249 (18)
C2—C31.390 (2)C19—H191.0000
C2—H20.9500C20—H20A0.9800
C3—C41.389 (2)C20—H20B0.9800
C3—H30.9500C20—H20C0.9800
C4—C51.390 (2)C21—C261.394 (2)
C4—H40.9500C21—C221.3970 (18)
C5—C61.388 (2)C22—C231.396 (2)
C5—H50.9500C22—H220.9500
C6—H60.9500C23—C241.386 (2)
C7—C81.5175 (18)C23—H230.9500
C7—H71.0000C24—C251.391 (2)
C8—H8A0.9800C24—H240.9500
C8—H8B0.9800C25—C261.389 (2)
C8—H8C0.9800C25—H250.9500
C9—C101.5012 (18)C26—H260.9500
C9—N1—C12112.10 (11)C11—C13—C14113.97 (11)
C9—N1—C7125.51 (11)C11—C13—H13123.0
C12—N1—C7122.27 (11)C14—C13—H13123.0
C18—N2—C17111.95 (11)C15—C14—C13123.06 (12)
C18—N2—C19122.19 (11)C15—C14—C18107.76 (11)
C17—N2—C19125.31 (11)C13—C14—C18129.16 (12)
C6—C1—C2118.78 (13)C14—C15—C16122.69 (12)
C6—C1—C7118.53 (11)C14—C15—C17108.64 (11)
C2—C1—C7122.67 (12)C16—C15—C17128.56 (12)
C3—C2—C1120.37 (13)C10—C16—C15114.41 (11)
C3—C2—H2119.8C10—C16—H16122.8
C1—C2—H2119.8C15—C16—H16122.8
C4—C3—C2120.44 (13)O3—C17—N2126.28 (12)
C4—C3—H3119.8O3—C17—C15128.21 (12)
C2—C3—H3119.8N2—C17—C15105.50 (10)
C3—C4—C5119.48 (13)O4—C18—N2125.85 (13)
C3—C4—H4120.3O4—C18—C14128.01 (12)
C5—C4—H4120.3N2—C18—C14106.14 (11)
C6—C5—C4120.03 (13)N2—C19—C21111.00 (10)
C6—C5—H5120.0N2—C19—C20109.47 (11)
C4—C5—H5120.0C21—C19—C20115.67 (11)
C5—C6—C1120.89 (13)N2—C19—H19106.7
C5—C6—H6119.6C21—C19—H19106.7
C1—C6—H6119.6C20—C19—H19106.7
N1—C7—C8111.52 (11)C19—C20—H20A109.5
N1—C7—C1109.15 (10)C19—C20—H20B109.5
C8—C7—C1116.11 (11)H20A—C20—H20B109.5
N1—C7—H7106.5C19—C20—H20C109.5
C8—C7—H7106.5H20A—C20—H20C109.5
C1—C7—H7106.5H20B—C20—H20C109.5
C7—C8—H8A109.5C26—C21—C22118.67 (13)
C7—C8—H8B109.5C26—C21—C19119.05 (12)
H8A—C8—H8B109.5C22—C21—C19122.29 (12)
C7—C8—H8C109.5C23—C22—C21120.35 (13)
H8A—C8—H8C109.5C23—C22—H22119.8
H8B—C8—H8C109.5C21—C22—H22119.8
O1—C9—N1126.36 (13)C24—C23—C22120.37 (12)
O1—C9—C10127.63 (12)C24—C23—H23119.8
N1—C9—C10106.01 (11)C22—C23—H23119.8
C16—C10—C11122.80 (12)C23—C24—C25119.57 (13)
C16—C10—C9129.12 (12)C23—C24—H24120.2
C11—C10—C9108.05 (11)C25—C24—H24120.2
C13—C11—C10123.07 (12)C26—C25—C24120.09 (13)
C13—C11—C12129.09 (12)C26—C25—H25120.0
C10—C11—C12107.84 (11)C24—C25—H25120.0
O2—C12—N1125.16 (13)C25—C26—C21120.93 (13)
O2—C12—C11128.83 (13)C25—C26—H26119.5
N1—C12—C11106.01 (10)C21—C26—H26119.5
C6—C1—C2—C30.06 (19)C13—C14—C15—C160.31 (19)
C7—C1—C2—C3178.47 (13)C18—C14—C15—C16177.85 (11)
C1—C2—C3—C40.5 (2)C13—C14—C15—C17176.77 (11)
C2—C3—C4—C50.9 (2)C18—C14—C15—C171.39 (14)
C3—C4—C5—C60.8 (2)C11—C10—C16—C150.13 (18)
C4—C5—C6—C10.2 (2)C9—C10—C16—C15177.67 (12)
C2—C1—C6—C50.21 (19)C14—C15—C16—C100.26 (18)
C7—C1—C6—C5178.38 (12)C17—C15—C16—C10175.45 (12)
C9—N1—C7—C866.11 (16)C18—N2—C17—O3177.94 (13)
C12—N1—C7—C8118.32 (13)C19—N2—C17—O36.4 (2)
C9—N1—C7—C163.51 (15)C18—N2—C17—C150.74 (14)
C12—N1—C7—C1112.06 (13)C19—N2—C17—C15172.31 (12)
C6—C1—C7—N157.40 (14)C14—C15—C17—O3177.32 (13)
C2—C1—C7—N1124.07 (13)C16—C15—C17—O31.1 (2)
C6—C1—C7—C8175.54 (12)C14—C15—C17—N21.33 (13)
C2—C1—C7—C82.99 (18)C16—C15—C17—N2177.52 (12)
C12—N1—C9—O1179.01 (13)C17—N2—C18—O4179.55 (12)
C7—N1—C9—O13.1 (2)C19—N2—C18—O47.7 (2)
C12—N1—C9—C100.25 (14)C17—N2—C18—C140.08 (14)
C7—N1—C9—C10176.20 (11)C19—N2—C18—C14171.80 (11)
O1—C9—C10—C160.9 (2)C15—C14—C18—O4179.61 (13)
N1—C9—C10—C16178.40 (13)C13—C14—C18—O42.4 (2)
O1—C9—C10—C11178.91 (13)C15—C14—C18—N20.93 (14)
N1—C9—C10—C110.33 (13)C13—C14—C18—N2177.07 (12)
C16—C10—C11—C130.58 (19)C18—N2—C19—C21120.96 (13)
C9—C10—C11—C13178.79 (12)C17—N2—C19—C2168.29 (16)
C16—C10—C11—C12178.50 (12)C18—N2—C19—C20110.14 (13)
C9—C10—C11—C120.29 (13)C17—N2—C19—C2060.61 (16)
C9—N1—C12—O2179.90 (13)N2—C19—C21—C2681.30 (15)
C7—N1—C12—O24.0 (2)C20—C19—C21—C26153.20 (13)
C9—N1—C12—C110.07 (14)N2—C19—C21—C2299.25 (14)
C7—N1—C12—C11176.18 (11)C20—C19—C21—C2226.25 (18)
C13—C11—C12—O21.3 (2)C26—C21—C22—C231.0 (2)
C10—C11—C12—O2179.68 (13)C19—C21—C22—C23179.51 (12)
C13—C11—C12—N1178.86 (12)C21—C22—C23—C240.3 (2)
C10—C11—C12—N10.15 (13)C22—C23—C24—C251.2 (2)
C10—C11—C13—C141.07 (18)C23—C24—C25—C260.9 (2)
C12—C11—C13—C14177.80 (12)C24—C25—C26—C210.5 (2)
C11—C13—C14—C150.94 (18)C22—C21—C26—C251.4 (2)
C11—C13—C14—C18176.79 (12)C19—C21—C26—C25179.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.503.4129 (16)162
C7—H7···O4ii1.002.493.1840 (16)126
C20—H20C···O1iii0.982.563.4948 (17)161
C23—H23···O1iv0.952.573.4847 (18)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+2; (iii) x, y1/2, z+1; (iv) x1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H20N2O4
Mr424.44
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.6401 (1), 16.1040 (2), 11.3759 (2)
β (°) 99.762 (2)
V3)1018.29 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.656, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7858, 4093, 4091
Rint0.018
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.11
No. of reflections4093
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25
Absolute structureFlack (1983), 1898 Friedel pairs
Absolute structure parameter0.08 (12)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.503.4129 (16)162
C7—H7···O4ii1.002.493.1840 (16)126
C20—H20C···O1iii0.982.563.4948 (17)161
C23—H23···O1iv0.952.573.4847 (18)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+2; (iii) x, y1/2, z+1; (iv) x1, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project (No. RGP-VPP-163). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614–626.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011). Eur. J. Med. Chem. 46, 4324–4329.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, A. A.-M., ElTahir, K. E. H. & Asiri, Y. A. (2011). Eur. J. Med. Chem. 46, 1648–1655.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds