organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-4-(phenyl­sulfan­yl)imidazolidin-2-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 February 2012; accepted 22 February 2012; online 29 February 2012)

The five-membered ring in the title imidazolidinone derivative, C11H12N2O2S, adopts an envelope conformation with the S-bound C atom being the flap atom. Overall, the mol­ecule has a U-shaped conformation as both rings are folded towards each other [dihedral angle = 31.66 (6)°]. An eight-membered amide {⋯HNCO}2 synthon leads to hydrogen-bonded dimeric aggregates in the crystal: these are additionally linked by C—H⋯π inter­actions.

Related literature

For the anti­tumour potential of imidazolidinones, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008-2014.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O2S

  • Mr = 236.29

  • Monoclinic, P 21 /n

  • a = 7.0473 (1) Å

  • b = 14.3274 (3) Å

  • c = 10.7796 (2) Å

  • β = 96.921 (2)°

  • V = 1080.48 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.56 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.754, Tmax = 1.000

  • 8437 measured reflections

  • 2186 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.01

  • 2186 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.876 (19) 2.032 (19) 2.8989 (13) 169.8 (17)
C1—H1ACg1ii 0.98 2.72 3.6360 (13) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study described the anti-tumor potential of imidazolidinones (Abdel-Aziz et al., 2012). In continuation of these studies, herein, the crystal structure determination of an imidazolidinone derivative, 1-acetyl-4-(phenylthio)imidazolidin-2-one (I) is described.

The five-membered ring in (I), Fig. 1, adopts an envelope conformation with the C4 atom being the flap atom. The puckering parameters (Cremer & Pople, 1975) are Q = 0.2364 (12) Å and ϕ2 = 113.9 (3)°. The molecule has a U-shaped conformation whereby the five- and six-membered rings lie to the same side of the molecule and form a dihedral angle of 31.66 (6)°.

In the crystal packing, centrosymmetrically related molecules associate via N—H···O hydrogen bonds leading to the familiar eight-membered amide {···HNCO}2 synthon, Table 1. The dimers are connected into the three-dimensional architecture by C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the antitumour potential of imidazolidinones, see: Abdel-Aziz et al. (2012). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

At room temperature, trifluoroacetic acid (0.3 equiv.) was added drop wise to a stirred solution of 1-acetyl-4-methoxyimidazolidin-2-one (1 equiv.) and thiophenol (1 equiv.) in dry CH3CN (0.01 mol/l) over a period of 15 min. After being stirred for 2 h at room temperature, the mixture was quenched by adding ammonium chloride solution (5 ml). The product was extracted with ethylacetate, washed with brine and dried over anhydrous sodium sulfate. The product obtained after evaporation of solvent was purified by column chromatography using a mixture of hexane and CHCl3 (1:1 v/v) as eluent. Crystals were obtained by slow evaporation of the eluent solution. Yield, 96%. m.p. 383–384 K. IR (KBr, cm-1): ν 3320 (N—H), 1760, 1710 (C O). 1H NMR (CDCl3): δ 2.20 (s, 3H), 3.98 (m, 1H), 4.06 (m, 1H), 4.901 (m, 1H), 6.42 (s, 1H), 7.28 (d, 3H, J = 7.0 Hz), 7.45–7.46 (d, 2H, J = 5.5 Hz). 13C NMR (CDCl3): δ 23.21, 48.95, 56.17, 127.51, 129.07, 129.36, 129.46, 135.22, 155.12, 170.11.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The H atom bonded to N was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The N—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-Acetyl-4-(phenylsulfanyl)imidazolidin-2-one top
Crystal data top
C11H12N2O2SF(000) = 496
Mr = 236.29Dx = 1.453 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 6092 reflections
a = 7.0473 (1) Åθ = 3.1–76.4°
b = 14.3274 (3) ŵ = 2.56 mm1
c = 10.7796 (2) ÅT = 100 K
β = 96.921 (2)°Prism, colourless
V = 1080.48 (3) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2186 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2135 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 5.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1715
Tmin = 0.754, Tmax = 1.000l = 1013
8437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5578P]
where P = (Fo2 + 2Fc2)/3
2186 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H12N2O2SV = 1080.48 (3) Å3
Mr = 236.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.0473 (1) ŵ = 2.56 mm1
b = 14.3274 (3) ÅT = 100 K
c = 10.7796 (2) Å0.35 × 0.30 × 0.25 mm
β = 96.921 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2186 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2135 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 1.000Rint = 0.015
8437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
2186 reflectionsΔρmin = 0.27 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90697 (4)0.65626 (2)0.40810 (3)0.01816 (10)
O10.34661 (12)0.49945 (6)0.34757 (8)0.01716 (19)
O20.48246 (13)0.61074 (6)0.00853 (8)0.0195 (2)
N10.54386 (14)0.54954 (7)0.20071 (9)0.0138 (2)
N20.67635 (15)0.49985 (7)0.38573 (9)0.0161 (2)
C10.20799 (17)0.57746 (9)0.11228 (11)0.0174 (3)
H1A0.13590.60280.03630.026*
H1B0.18140.61460.18460.026*
H1C0.16960.51260.12370.026*
C20.41743 (17)0.58111 (8)0.10054 (10)0.0142 (2)
C30.50542 (17)0.51505 (8)0.31596 (10)0.0138 (2)
C40.83250 (17)0.54464 (9)0.33269 (11)0.0163 (2)
H40.94450.50130.33990.020*
C50.75037 (17)0.55287 (9)0.19467 (11)0.0169 (2)
H5A0.78830.61240.15820.020*
H5B0.79250.50030.14500.020*
C60.68485 (17)0.71643 (8)0.38907 (11)0.0154 (2)
C70.63946 (19)0.77629 (9)0.28787 (11)0.0192 (3)
H70.73040.78780.23140.023*
C80.4618 (2)0.81908 (9)0.26958 (12)0.0209 (3)
H80.43050.85900.19970.025*
C90.32924 (19)0.80386 (9)0.35317 (12)0.0201 (3)
H90.20730.83290.34020.024*
C100.37606 (18)0.74601 (9)0.45571 (11)0.0180 (3)
H100.28620.73620.51340.022*
C110.55324 (17)0.70240 (8)0.47448 (11)0.0158 (2)
H110.58480.66320.54500.019*
H10.675 (3)0.4930 (13)0.4664 (18)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01240 (17)0.02410 (18)0.01774 (16)0.00284 (10)0.00085 (11)0.00434 (11)
O10.0171 (5)0.0213 (4)0.0130 (4)0.0053 (3)0.0016 (3)0.0022 (3)
O20.0216 (5)0.0235 (5)0.0139 (4)0.0003 (4)0.0039 (3)0.0045 (3)
N10.0132 (5)0.0171 (5)0.0112 (4)0.0003 (4)0.0018 (4)0.0004 (4)
N20.0167 (5)0.0189 (5)0.0121 (5)0.0000 (4)0.0005 (4)0.0016 (4)
C10.0154 (6)0.0203 (6)0.0163 (5)0.0016 (5)0.0003 (4)0.0031 (4)
C20.0178 (6)0.0123 (5)0.0122 (5)0.0004 (4)0.0003 (4)0.0004 (4)
C30.0181 (6)0.0112 (5)0.0117 (5)0.0011 (4)0.0004 (4)0.0010 (4)
C40.0141 (6)0.0199 (6)0.0145 (5)0.0016 (4)0.0003 (4)0.0017 (4)
C50.0132 (6)0.0239 (6)0.0137 (5)0.0005 (5)0.0013 (4)0.0024 (5)
C60.0152 (6)0.0160 (6)0.0148 (5)0.0041 (4)0.0018 (4)0.0045 (4)
C70.0252 (7)0.0177 (6)0.0158 (6)0.0051 (5)0.0065 (5)0.0022 (4)
C80.0300 (7)0.0150 (6)0.0170 (6)0.0016 (5)0.0001 (5)0.0010 (5)
C90.0189 (6)0.0175 (6)0.0231 (6)0.0004 (5)0.0006 (5)0.0038 (5)
C100.0179 (6)0.0189 (6)0.0178 (6)0.0042 (5)0.0046 (5)0.0045 (5)
C110.0187 (6)0.0159 (6)0.0128 (5)0.0046 (5)0.0015 (4)0.0015 (4)
Geometric parameters (Å, º) top
S1—C61.7771 (13)C4—H41.0000
S1—C41.8413 (13)C5—H5A0.9900
O1—C31.2290 (15)C5—H5B0.9900
O2—C21.2181 (14)C6—C71.3943 (18)
N1—C31.3936 (14)C6—C111.3978 (16)
N1—C21.3902 (15)C7—C81.3864 (19)
N1—C51.4654 (15)C7—H70.9500
N2—C31.3586 (16)C8—C91.3913 (18)
N2—C41.4496 (15)C8—H80.9500
N2—H10.876 (19)C9—C101.3891 (18)
C1—C21.4975 (16)C9—H90.9500
C1—H1A0.9800C10—C111.3891 (18)
C1—H1B0.9800C10—H100.9500
C1—H1C0.9800C11—H110.9500
C4—C51.5346 (16)
C6—S1—C499.80 (6)N1—C5—C4102.41 (9)
C3—N1—C2129.24 (10)N1—C5—H5A111.3
C3—N1—C5110.61 (10)C4—C5—H5A111.3
C2—N1—C5120.12 (10)N1—C5—H5B111.3
C3—N2—C4112.04 (10)C4—C5—H5B111.3
C3—N2—H1116.8 (12)H5A—C5—H5B109.2
C4—N2—H1122.8 (12)C7—C6—C11119.73 (12)
C2—C1—H1A109.5C7—C6—S1120.30 (9)
C2—C1—H1B109.5C11—C6—S1119.96 (10)
H1A—C1—H1B109.5C8—C7—C6120.09 (11)
C2—C1—H1C109.5C8—C7—H7120.0
H1A—C1—H1C109.5C6—C7—H7120.0
H1B—C1—H1C109.5C7—C8—C9120.26 (12)
O2—C2—N1118.50 (11)C7—C8—H8119.9
O2—C2—C1123.53 (11)C9—C8—H8119.9
N1—C2—C1117.97 (10)C8—C9—C10119.68 (12)
O1—C3—N2126.42 (10)C8—C9—H9120.2
O1—C3—N1126.36 (11)C10—C9—H9120.2
N2—C3—N1107.20 (10)C11—C10—C9120.49 (11)
N2—C4—C5101.59 (9)C11—C10—H10119.8
N2—C4—S1113.57 (8)C9—C10—H10119.8
C5—C4—S1114.55 (9)C10—C11—C6119.70 (11)
N2—C4—H4108.9C10—C11—H11120.1
C5—C4—H4108.9C6—C11—H11120.1
S1—C4—H4108.9
C3—N1—C2—O2178.27 (11)C3—N1—C5—C416.59 (12)
C5—N1—C2—O20.41 (17)C2—N1—C5—C4161.64 (10)
C3—N1—C2—C11.26 (18)N2—C4—C5—N123.05 (12)
C5—N1—C2—C1179.12 (10)S1—C4—C5—N199.80 (10)
C4—N2—C3—O1167.06 (11)C4—S1—C6—C795.17 (10)
C4—N2—C3—N114.33 (13)C4—S1—C6—C1183.57 (10)
C2—N1—C3—O15.9 (2)C11—C6—C7—C82.31 (18)
C5—N1—C3—O1176.12 (11)S1—C6—C7—C8176.44 (9)
C2—N1—C3—N2175.53 (11)C6—C7—C8—C91.12 (19)
C5—N1—C3—N22.49 (13)C7—C8—C9—C100.44 (19)
C3—N2—C4—C523.91 (13)C8—C9—C10—C110.80 (19)
C3—N2—C4—S199.60 (10)C9—C10—C11—C60.39 (18)
C6—S1—C4—N255.80 (9)C7—C6—C11—C101.94 (18)
C6—S1—C4—C560.32 (9)S1—C6—C11—C10176.81 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.876 (19)2.032 (19)2.8989 (13)169.8 (17)
C1—H1A···Cg1ii0.982.723.6360 (13)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O2S
Mr236.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.0473 (1), 14.3274 (3), 10.7796 (2)
β (°) 96.921 (2)
V3)1080.48 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.56
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.754, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8437, 2186, 2135
Rint0.015
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.01
No. of reflections2186
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.876 (19)2.032 (19)2.8989 (13)169.8 (17)
C1—H1A···Cg1ii0.982.723.6360 (13)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008–2014.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds