organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–2-meth­­oxy­benzoic acid (1/2)

aSuzhou Industrial Park Centers for Disease Control and Prevention, Institute of Health Inspection and Supervision, 215021 Suzhou, Jiangsu, People's Republic of China
*Correspondence e-mail: xiaoyan.qian@live.cn

(Received 12 January 2012; accepted 25 January 2012; online 4 February 2012)

The asymmetric unit of the title compound, C10H8N2·2C8H8O3, contains two 2-meth­oxy­benzoic acid mol­ecules and one 4,4′-bipyridine mol­ecule. The 4,4′-bipyridine mol­ecule is disordered over two positions in a 1:1 ratio. In the crystal, the 2-meth­oxy­benzoic acid and 4,4′-bipyridine mol­ecules are connected by inter­molecular O—H⋯N hydrogen bonds. The dihedral angle between the carboxy group and its attached ring is 26.823 (2)°.

Related literature

For the use and related structures of 2-meth­oxy­benzoic acid in coordination chemistry, see: Vollano et al. (1984[Vollano, J. F., Day, R. O., Rau, D. N., Chandrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3153-3160.]); Smith et al. (1986[Smith, P. J., Day, R. O., Chandrasekhar, V. M., Holmes, J. & Holmes, R. R. (1986). Inorg. Chem. 25, 2495-2499.]); Li (2005[Li, X. (2005). Z. Kristallogr. New Cryst. Struct. 220, 407-408.]); Andrews et al. (2006[Andrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852-4858.]); Ren et al. (2006[Ren, N., Zhang, J. J., Xu, S. L., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2006). Chin. J. Inorg. Chem. 22, 1905-1907.]); Zhao et al. (2008[Zhao, N., Wang, S. P., Ma, R. X., Gao, Z. H., Wang, R. F. & Zhang, J. J. (2008). J. Alloys Compd, 463, 338-342.]); Sharma et al. (2009[Sharma, R. P., Singh, S., Singh, A. & Ferretti, V. (2009). J. Mol. Struct. 918, 188-193.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C8H8O3

  • Mr = 460.47

  • Monoclinic, P 21 /c

  • a = 7.7090 (15) Å

  • b = 25.620 (5) Å

  • c = 6.3624 (13) Å

  • β = 112.08 (3)°

  • V = 1164.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.977

  • 5991 measured reflections

  • 2060 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.06

  • 2060 reflections

  • 172 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.85 2.673 (2) 177
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridine is a well known molecule often used as a linker in polymeric coordination complexes. 2-Methoxybenzoic acid is also sometimes used as a common ligand in coordination polymers (Vollano et al., 1984; Smith et al., 1986; Li, 2005; Andrews et al., 2006; Ren et al., 2006; Zhao et al., 2008; Sharma et al., 2009.). The title compound, (I), is a 1:2 cocrystal of the aforementioned linkers. Herewith we present its crystal structure. The asymmetric unit of the title compound (Fig. 1) contains two 2-methoxybenzoic acid molecules and one 4,4'-bipyridine molecule. The dihedral angle of carboxy group to its ring is 26.823 (2)°. The 4,4'-bipyridine molecule is disordered over two positions in a 1:1 ratio. In the crystal structure, the 2-methoxybenzoic acid and 4,4'-bipyridine are held together by intermolecular O—H···N hydrogen bonds.

Related literature top

For the use and related structures of 2-methoxybenzoic acid in coordination chemistry, see: Vollano et al. (1984); Smith et al. (1986); Li (2005); Andrews et al. (2006); Ren et al. (2006); Zhao et al. (2008); Sharma et al. (2009).

Experimental top

An ethanol solution (20 ml) of 2-methoxybenzoic acid (0.1 mmol) and 4,4'-bipyridine (0.1 mmol) was heated at 333 K for 2 h. Then the mixture was cooled to room temperature. After two weeks colorless crystals were obtained that were suitable for X-ray diffraction study.

Refinement top

Four C atoms of bipyridyl group are disordered over two sites. The occupancy factors refined to 0.761 (2) and 0.239 (2). H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 Å, Caromatic—H = 0.93 Å and Cmethyl—H = 0.96 Å and with Uiso(H) = 1.2Ueq(Cmethyl,O) and Uiso(H) = 1.5Ueq(aromatic), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic labeling and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The O—H···N hydrogen bonds of (I). All H atoms have been omitted for clarity. The dashed lines indicate the O—H···N hydrogen bonds.
4,4'-Bipyridine–2-methoxybenzoic acid (1/2) top
Crystal data top
C10H8N2·2C8H8O3F(000) = 484
Mr = 460.47Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 7.7090 (15) Åθ = 2.4–23.4°
b = 25.620 (5) ŵ = 0.09 mm1
c = 6.3624 (13) ÅT = 298 K
β = 112.08 (3)°Block, colourless
V = 1164.4 (4) Å30.30 × 0.28 × 0.25 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2060 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 69
Tmin = 0.972, Tmax = 0.977k = 3029
5991 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1072P]
where P = (Fo2 + 2Fc2)/3
2060 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.15 e Å3
9 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H8N2·2C8H8O3V = 1164.4 (4) Å3
Mr = 460.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7090 (15) ŵ = 0.09 mm1
b = 25.620 (5) ÅT = 298 K
c = 6.3624 (13) Å0.30 × 0.28 × 0.25 mm
β = 112.08 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1540 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.088
5991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2060 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4229 (2)0.58341 (6)0.9083 (3)0.0771 (5)
H10.36450.57150.98160.116*
C10.4341 (3)0.65024 (7)0.6614 (3)0.0525 (5)
O20.1962 (2)0.64201 (7)0.8143 (3)0.0791 (5)
C20.3393 (3)0.68089 (7)0.4708 (3)0.0562 (5)
O30.1512 (2)0.68604 (6)0.4068 (2)0.0717 (5)
C30.4378 (4)0.70402 (9)0.3514 (4)0.0751 (7)
H30.37470.72420.22410.090*
C40.6271 (4)0.69715 (11)0.4209 (5)0.0877 (8)
H40.69160.71310.34080.105*
C50.7227 (3)0.66730 (11)0.6053 (6)0.0875 (8)
H50.85130.66270.65050.105*
C60.6260 (3)0.64391 (9)0.7248 (4)0.0702 (6)
H60.69120.62350.85050.084*
C70.3370 (3)0.62529 (8)0.7980 (3)0.0545 (5)
C80.0540 (4)0.71555 (13)0.2045 (4)0.0945 (9)
H8A0.09820.75090.22560.142*
H8B0.07790.71510.17340.142*
H8C0.07670.70040.07930.142*
N10.2439 (3)0.54252 (7)0.1570 (3)0.0661 (5)
C110.0512 (3)0.50894 (7)0.4279 (3)0.0556 (5)
C90.3203 (7)0.5048 (2)0.3112 (9)0.0635 (12)0.50
H90.43620.49100.32770.076*0.50
C100.2284 (7)0.48633 (19)0.4455 (9)0.0616 (11)0.50
H100.28040.45930.54740.074*0.50
C120.0112 (8)0.5490 (2)0.2734 (9)0.0581 (18)*0.50
H120.12250.56580.25680.070*0.50
C130.0872 (8)0.5649 (3)0.1426 (10)0.063 (2)*0.50
H130.04060.59230.04110.075*0.50
C9'0.2515 (7)0.49348 (19)0.2343 (9)0.0625 (16)*0.50
H9'0.32800.46980.19900.075*0.50
C10'0.1531 (8)0.4757 (2)0.3634 (9)0.0645 (16)*0.50
H10'0.15870.44070.40430.077*0.50
C12'0.0289 (8)0.55892 (18)0.3415 (9)0.0554 (13)0.50
H12'0.05160.58230.37100.066*0.50
C13'0.1266 (8)0.57342 (19)0.2127 (10)0.0599 (14)0.50
H13'0.11120.60750.15850.072*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0796 (11)0.0708 (10)0.0986 (12)0.0224 (8)0.0536 (9)0.0295 (9)
C10.0532 (11)0.0469 (10)0.0603 (11)0.0023 (8)0.0247 (9)0.0035 (9)
O20.0730 (10)0.0971 (12)0.0823 (11)0.0283 (8)0.0465 (8)0.0295 (9)
C20.0632 (12)0.0525 (10)0.0581 (11)0.0013 (9)0.0287 (9)0.0044 (9)
O30.0667 (9)0.0895 (11)0.0631 (9)0.0218 (7)0.0292 (7)0.0171 (8)
C30.0904 (17)0.0689 (14)0.0751 (14)0.0069 (12)0.0413 (13)0.0071 (11)
C40.0878 (19)0.0886 (17)0.103 (2)0.0228 (14)0.0550 (16)0.0040 (15)
C50.0574 (13)0.0915 (18)0.121 (2)0.0166 (12)0.0426 (14)0.0042 (17)
C60.0533 (12)0.0671 (13)0.0882 (15)0.0044 (10)0.0244 (11)0.0036 (11)
C70.0532 (11)0.0563 (11)0.0562 (11)0.0063 (9)0.0231 (9)0.0015 (9)
C80.0963 (18)0.126 (2)0.0663 (14)0.0422 (16)0.0362 (13)0.0282 (15)
N10.0785 (12)0.0605 (10)0.0678 (11)0.0008 (9)0.0373 (9)0.0010 (9)
C110.0683 (12)0.0470 (10)0.0550 (11)0.0013 (9)0.0272 (9)0.0049 (8)
C90.054 (3)0.076 (3)0.060 (3)0.003 (2)0.022 (2)0.001 (2)
C100.059 (3)0.067 (3)0.059 (3)0.013 (2)0.022 (2)0.018 (2)
C12'0.072 (3)0.042 (2)0.055 (3)0.005 (2)0.028 (2)0.010 (2)
C13'0.083 (3)0.043 (2)0.054 (3)0.012 (2)0.026 (3)0.002 (2)
Geometric parameters (Å, º) top
O1—C71.316 (2)N1—C9'1.343 (5)
O1—H10.8200N1—C91.345 (4)
C1—C61.389 (3)N1—C13'1.346 (5)
C1—C21.398 (3)C11—C10'1.325 (6)
C1—C71.488 (3)C11—C121.377 (6)
O2—C71.207 (2)C11—C12'1.378 (5)
C2—O31.357 (2)C11—C101.448 (4)
C2—C31.392 (3)C11—C11i1.490 (4)
O3—C81.437 (3)C9—C101.382 (5)
C3—C41.368 (3)C9—H90.9300
C3—H30.9300C10—H100.9300
C4—C51.362 (4)C12—C131.381 (7)
C4—H40.9300C12—H120.9300
C5—C61.385 (4)C13—H130.9300
C5—H50.9300C9'—C10'1.388 (6)
C6—H60.9300C9'—H9'0.9300
C8—H8A0.9600C10'—H10'0.9300
C8—H8B0.9600C12'—C13'1.357 (6)
C8—H8C0.9600C12'—H12'0.9300
N1—C131.309 (6)C13'—H13'0.9300
C7—O1—H1109.5C10'—C11—C12110.4 (4)
C6—C1—C2118.00 (18)C10'—C11—C12'118.3 (3)
C6—C1—C7119.65 (19)C12—C11—C10114.8 (3)
C2—C1—C7122.34 (17)C12'—C11—C10112.0 (3)
O3—C2—C3122.4 (2)C10'—C11—C11i120.4 (3)
O3—C2—C1117.74 (17)C12—C11—C11i123.0 (3)
C3—C2—C1119.9 (2)C12'—C11—C11i121.0 (3)
C2—O3—C8117.29 (17)C10—C11—C11i122.1 (3)
C4—C3—C2120.2 (2)N1—C9—C10120.8 (4)
C4—C3—H3119.9N1—C9—H9119.6
C2—C3—H3119.9C10—C9—H9119.6
C5—C4—C3121.1 (2)C9—C10—C11120.2 (4)
C5—C4—H4119.4C9—C10—H10119.9
C3—C4—H4119.4C11—C10—H10119.9
C4—C5—C6119.1 (2)C11—C12—C13121.7 (5)
C4—C5—H5120.4C11—C12—H12119.1
C6—C5—H5120.4C13—C12—H12119.1
C5—C6—C1121.6 (2)N1—C13—C12122.0 (6)
C5—C6—H6119.2N1—C13—H13119.0
C1—C6—H6119.2C12—C13—H13119.0
O2—C7—O1122.15 (18)N1—C9'—C10'124.5 (5)
O2—C7—C1124.29 (18)N1—C9'—H9'117.7
O1—C7—C1113.52 (17)C10'—C9'—H9'117.7
O3—C8—H8A109.5C11—C10'—C9'119.4 (5)
O3—C8—H8B109.5C11—C10'—H10'120.3
H8A—C8—H8B109.5C9'—C10'—H10'120.3
O3—C8—H8C109.5C13'—C12'—C11118.7 (4)
H8A—C8—H8C109.5C13'—C12'—H12'120.6
H8B—C8—H8C109.5C11—C12'—H12'120.6
C13—N1—C9'110.4 (4)N1—C13'—C12'125.4 (4)
C13—N1—C9120.3 (4)N1—C13'—H13'117.3
C9'—N1—C13'113.3 (3)C12'—C13'—H13'117.3
C9—N1—C13'112.6 (3)
C6—C1—C2—O3178.65 (17)C10'—C11—C12—C1328.0 (6)
C7—C1—C2—O32.3 (3)C12'—C11—C12—C1388.6 (12)
C6—C1—C2—C30.2 (3)C10—C11—C12—C131.7 (7)
C7—C1—C2—C3178.92 (18)C11i—C11—C12—C13179.7 (4)
C3—C2—O3—C81.7 (3)C9'—N1—C13—C1224.7 (7)
C1—C2—O3—C8177.1 (2)C9—N1—C13—C123.9 (8)
O3—C2—C3—C4179.2 (2)C13'—N1—C13—C1277.4 (12)
C1—C2—C3—C40.4 (3)C11—C12—C13—N10.5 (9)
C2—C3—C4—C50.7 (4)C13—N1—C9'—C10'23.9 (7)
C3—C4—C5—C60.5 (4)C9—N1—C9'—C10'93.1 (9)
C4—C5—C6—C10.1 (4)C13'—N1—C9'—C10'1.4 (7)
C2—C1—C6—C50.4 (3)C12—C11—C10'—C9'28.7 (6)
C7—C1—C6—C5178.7 (2)C12'—C11—C10'—C9'7.6 (7)
C6—C1—C7—O2151.7 (2)C10—C11—C10'—C9'76.1 (7)
C2—C1—C7—O227.4 (3)C11i—C11—C10'—C9'178.2 (4)
C6—C1—C7—O126.2 (3)N1—C9'—C10'—C113.8 (8)
C2—C1—C7—O1154.75 (18)C10'—C11—C12'—C13'6.4 (7)
C13—N1—C9—C104.8 (8)C12—C11—C12'—C13'78.6 (12)
C9'—N1—C9—C1070.7 (8)C10—C11—C12'—C13'23.5 (7)
C13'—N1—C9—C1026.7 (7)C11i—C11—C12'—C13'179.4 (5)
N1—C9—C10—C112.5 (9)C13—N1—C13'—C12'89.0 (13)
C10'—C11—C10—C986.1 (8)C9'—N1—C13'—C12'2.6 (8)
C12—C11—C10—C90.7 (7)C9—N1—C13'—C12'27.3 (8)
C12'—C11—C10—C923.2 (7)C11—C12'—C13'—N11.2 (10)
C11i—C11—C10—C9178.8 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.821.852.673 (2)177
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C8H8O3
Mr460.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7090 (15), 25.620 (5), 6.3624 (13)
β (°) 112.08 (3)
V3)1164.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
5991, 2060, 1540
Rint0.088
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.06
No. of reflections2060
No. of parameters172
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.852.673 (2)176.9
Symmetry code: (i) x, y, z+1.
 

References

First citationAndrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852–4858.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. (2005). Z. Kristallogr. New Cryst. Struct. 220, 407–408.  CAS Google Scholar
First citationRen, N., Zhang, J. J., Xu, S. L., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2006). Chin. J. Inorg. Chem. 22, 1905–1907.  CAS Google Scholar
First citationSharma, R. P., Singh, S., Singh, A. & Ferretti, V. (2009). J. Mol. Struct. 918, 188–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, P. J., Day, R. O., Chandrasekhar, V. M., Holmes, J. & Holmes, R. R. (1986). Inorg. Chem. 25, 2495–2499.  CSD CrossRef CAS Web of Science Google Scholar
First citationVollano, J. F., Day, R. O., Rau, D. N., Chandrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3153–3160.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhao, N., Wang, S. P., Ma, R. X., Gao, Z. H., Wang, R. F. & Zhang, J. J. (2008). J. Alloys Compd, 463, 338–342.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds