organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o610-o611

Ergotaminine

aReference Materials, Department of Analytical Chemistry, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 20 January 2012; accepted 27 January 2012; online 4 February 2012)

The title compound {systematic name: (6aR,9S)-N-[(2R,5S,10aS,10bS)-5-benzyl-10b-hy­droxy-2-methyl-3,6-dioxoocta­hydro-8H-oxazolo[3,2-a]pyrrolo­[2,1-c]pyrazin-2-yl]-7-methyl-4,6,6a,7,8,9-hexa­hydro­indolo[4,3-fg]quinoline-9-carboxamide}, C33H35N5O5, was formed by an epimerization reaction of ergotamine. The non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar [maximum deviation = 0.317 (4) Å] and shows an envelope conformation, whereas ring D, involved in an intra­molecular N—H⋯N hydrogen bond exhibits a slightly distorted chair conformation. The structure displays chains running approximately parallel to the diagonal of bc plane that are formed through N—H⋯O hydrogen bonds.

Related literature

Ergotaminine is an ergot alkaloid formed by, among others, the fungus Claviceps purpurea on cereal grains and grasses during the growth process; see: Crews et al. (2009[Crews, C., Anderson, W. A. C., Rees, G. & Krska, R. (2009). Food Addit. Contam. Part B, 2, 79-85.]); Müller et al. (2009[Müller, C., Kemmlein, S., Klaffke, H., Krauthause, W., Preiss-Weigert, A. & Wittkowski, R. (2009). Mol. Nutr. Food Res. 53, 500-507.]). For investigations of the biologically inactive C8-(S)-isomer ergotaminine, see: Pierri et al. (1982[Pierri, L., Pitman, I. H., Rae, I. D., Winkler, D. A. & Andrews, P. R. (1982). J. Med. Chem. 25, 937-942.]); Komarova & Tolkachev (2001[Komarova, E. L. & Tolkachev, O. N. (2001). Pharm. Chem. J. 35, 37-45.]). For the crystal structure of ergotamine tartrate ethanol solvate, see: Pakhomova et al. (1995[Pakhomova, S., Ondráucek, J., Huusák, M., Kratochvíl, B., Jegorov, A. & Stuchlík, J. (1995). Acta Cryst. C51, 308-311.]). For the crystal structure of ergometrinine, another C8-(S)-configured ergotalkaloid, see: Merkel et al. (2010[Merkel, S., Köppen, R., Koch, M., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o2275.]). For the solubility of ergotaminine, see: Stoll (1945[Stoll, A. (1945). Helv. Chim. Acta, 28, 1283-1308.]).

[Scheme 1]

Experimental

Crystal data
  • C33H35N5O5

  • Mr = 581.66

  • Monoclinic, P 21

  • a = 10.974 (3) Å

  • b = 9.662 (2) Å

  • c = 14.450 (4) Å

  • β = 105.059 (15)°

  • V = 1479.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.2 × 0.1 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.986

  • 20196 measured reflections

  • 2781 independent reflections

  • 2240 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.093

  • S = 1.12

  • 2781 reflections

  • 390 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: determined from the synthesis

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3 0.86 2.53 2.955 (4) 112
N4—H3⋯O5i 0.86 2.17 2.981 (5) 157
Symmetry code: (i) x, y+1, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The fungus Claviceps purpurea is distributed worldwide through various climatic zones and produces a broad range of ergot alkaloids on grasses and cereal grains during the growth process whereas six epimeric pairs are predominantly formed. One of these main ergot alkaloids is ergotaminine. Contamination of flour and cereal based foods with ergot alkaloids including ergotaminine has previously been reported (Crews et al., 2009; Müller et al., 2009). The biologically inactive C8-(S)-isomer ergotaminine (Pierri et al., 1982) can be converted to the biologically active C8-(R)-isomer ergotamine and vice versa (Komarova & Tolkachev, 2001). The molecule crystallizes in the monoclinic space group P21. The molecular structure of the compound and the atom-labeling scheme are shown in Fig. 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. It was however established based on liquid chromatography data that confirmed the epimeric purity of the obtained ergotaminine crystals. Besides the intramolecular hydrogen bonds between N2—H2 and N3 (see Table 1; not shown in Fig. 2), each molecule is connected to two adjacent molecules via intermolecular hydrogen bonds (see Table 1; see dashed green bonds in Fig. 2). As a result adjacent chains run along the [011] and [011] direction in an oppositely slanted fashion and with an inlined angle of 69.4°.

Related literature top

Ergotaminine is an ergot alkaloid formed by, among others, the fungus Claviceps purpurea on cereal grains and grasses during the growth process; see: Crews et al. (2009); Müller et al. (2009). For investigations of the biologically inactive C8-(S)-isomer ergotaminine, see: Pierri et al. (1982); Komarova & Tolkachev (2001). For the crystal structure of ergotamine tartrate ethanol solvate, see: Pakhomova et al. (1995). For the crystal structure of ergometrinine, another C8-(S)-configured ergotalkaloid, see: Merkel et al. (2010). For the solubility of ergotaminine, see: Stoll (1945).

Experimental top

Ergotamine tartrate was obtained from Sigma–Aldrich (Taufkirchen, Germany). The stereoselective conversion of ergotamine to ergotaminine was carried out as follows: 12.4 mg ergotamine tartrate were dissolved in a solution of 5 ml methanol and 0.5 ml water. For epimerization reaction the resulting mixture was stored in a sealed vial in darkness at ambient temperature for two weeks. As a result of the slow crystallization colorless crystals of the title compound were formed, because of a substantial solubility difference between ergotamine and ergotaminine (as reported by Stoll (1945)). The isomeric purity (98%) of ergotaminine was proved by HPLC-FLD.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

The N—H and O—H H atoms were located in difference maps and fixed in their found positions (AFIX 3) with Uiso(H) = 1.2 of the parent atom Ueq or 1.5 Ueq(Cmethyl, O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the unit cell of the title compound, showing the hydrogen-bonded chains are running approximately parallel to the diagonal of b-c plane. Hydrogen bonds are drawn as dashed green lines. H atoms are omitted for clarity.
(6aR,9S)-N-[(2R,5S,10aS, 10bS)-5-Benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-8H- oxazolo[3,2-a]pyrrolo[2,1-c]pyrazin-2-yl]-7-methyl- 4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide top
Crystal data top
C33H35N5O5F(000) = 616
Mr = 581.66Dx = 1.306 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 86 reflections
a = 10.974 (3) Åθ = 4–29°
b = 9.662 (2) ŵ = 0.09 mm1
c = 14.450 (4) ÅT = 296 K
β = 105.059 (15)°Plate, colourless
V = 1479.5 (7) Å30.2 × 0.1 × 0.06 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
2781 independent reflections
Radiation source: fine-focus sealed tube2240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω/2θ scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.879, Tmax = 0.986k = 1111
20196 measured reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0345P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2781 reflectionsΔρmax = 0.15 e Å3
390 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: syn
Primary atom site location: structure-invariant direct methods
Crystal data top
C33H35N5O5V = 1479.5 (7) Å3
Mr = 581.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.974 (3) ŵ = 0.09 mm1
b = 9.662 (2) ÅT = 296 K
c = 14.450 (4) Å0.2 × 0.1 × 0.06 mm
β = 105.059 (15)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2781 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2240 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.986Rint = 0.087
20196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.12Δρmax = 0.15 e Å3
2781 reflectionsΔρmin = 0.19 e Å3
390 parametersAbsolute structure: syn
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2567 (2)0.1765 (2)0.57682 (16)0.0564 (7)
O20.3529 (2)0.2000 (2)0.45142 (16)0.0526 (6)
H10.35250.28460.45590.079*
O30.0202 (3)0.3535 (3)0.45451 (19)0.0753 (8)
O40.2943 (3)0.4688 (3)0.52044 (19)0.0787 (9)
O50.0781 (3)0.0063 (3)0.21039 (18)0.0726 (8)
N10.1306 (2)0.2059 (3)0.42571 (18)0.0458 (7)
N20.2054 (3)0.3898 (3)0.6360 (2)0.0589 (8)
H20.18510.41180.68770.071*
N30.3774 (3)0.4339 (3)0.8282 (2)0.0594 (8)
N40.1372 (4)0.7970 (5)1.0691 (3)0.0918 (13)
H30.10680.83441.11230.110*
N50.2018 (2)0.0396 (3)0.36023 (19)0.0478 (7)
C10.2503 (3)0.1457 (3)0.4785 (2)0.0438 (8)
C20.0775 (3)0.2859 (4)0.4814 (3)0.0529 (9)
C30.1537 (3)0.2655 (4)0.5853 (2)0.0513 (9)
C40.2866 (4)0.4728 (4)0.6038 (3)0.0606 (10)
C50.3716 (4)0.5658 (4)0.6793 (3)0.0626 (11)
H40.42990.61300.64870.075*
C60.4514 (4)0.4756 (4)0.7608 (3)0.0710 (12)
H50.47990.39360.73380.085*
H60.52530.52700.79510.085*
C70.3456 (3)0.5530 (4)0.8811 (3)0.0563 (10)
H70.42270.58130.92870.068*
C80.2471 (4)0.5103 (4)0.9358 (3)0.0649 (11)
H80.17360.47070.89130.078*
H90.28300.44070.98340.078*
C90.2085 (4)0.6349 (5)0.9840 (3)0.0637 (11)
C100.1623 (4)0.6591 (6)1.0624 (3)0.0858 (14)
H100.14990.59141.10480.103*
C110.1678 (4)0.8663 (5)0.9949 (3)0.0732 (12)
C120.2133 (3)0.7655 (4)0.9420 (3)0.0573 (10)
C130.2523 (3)0.7954 (4)0.8593 (3)0.0532 (9)
C140.3004 (3)0.6764 (4)0.8136 (2)0.0487 (9)
C150.3054 (3)0.6754 (4)0.7218 (3)0.0548 (9)
H110.26540.74670.68220.066*
C160.2457 (4)0.9325 (4)0.8304 (3)0.0661 (11)
H120.27180.95800.77650.079*
C170.1988 (4)1.0347 (4)0.8837 (3)0.0831 (14)
H130.19441.12620.86310.100*
C180.1594 (4)1.0026 (6)0.9656 (3)0.0841 (15)
H140.12861.07050.99910.101*
C190.4491 (5)0.3282 (5)0.8935 (3)0.0904 (14)
H150.47200.25450.85670.136*
H160.39800.29200.93260.136*
H170.52400.36900.93360.136*
C200.0706 (4)0.1934 (5)0.6393 (3)0.0718 (11)
H180.00200.25320.64260.108*
H190.11950.17180.70300.108*
H200.03780.10950.60660.108*
C210.0681 (3)0.1685 (4)0.3258 (2)0.0502 (9)
H210.02080.15230.32350.060*
C220.1174 (3)0.0328 (4)0.2951 (3)0.0507 (9)
C230.2471 (3)0.0094 (4)0.4643 (2)0.0470 (8)
H220.18810.04990.49730.056*
C240.3714 (4)0.0875 (4)0.4936 (3)0.0651 (11)
H230.44000.03250.48220.078*
H240.39140.11340.56070.078*
C250.3467 (4)0.2143 (4)0.4293 (3)0.0805 (13)
H250.30590.28620.45730.097*
H260.42520.25050.42020.097*
C260.2613 (4)0.1660 (4)0.3349 (3)0.0577 (10)
H270.30970.14560.28910.069*
H280.19840.23550.30800.069*
C270.0694 (4)0.2867 (4)0.2538 (3)0.0658 (11)
H290.01730.25840.19170.079*
H300.02960.36690.27370.079*
C280.1947 (4)0.3310 (4)0.2411 (2)0.0551 (10)
C290.2512 (5)0.2625 (5)0.1781 (3)0.0706 (12)
H310.21150.18590.14430.085*
C300.3658 (5)0.3069 (5)0.1651 (3)0.0863 (15)
H320.40210.25970.12290.104*
C310.4258 (5)0.4192 (6)0.2138 (4)0.0921 (15)
H330.50200.44940.20410.110*
C320.3729 (5)0.4871 (5)0.2769 (3)0.0867 (13)
H340.41430.56240.31130.104*
C330.2586 (4)0.4445 (4)0.2899 (3)0.0667 (11)
H350.22340.49270.33230.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (15)0.0628 (17)0.0461 (14)0.0085 (13)0.0098 (12)0.0074 (12)
O20.0457 (13)0.0436 (13)0.0695 (15)0.0059 (11)0.0167 (12)0.0008 (12)
O30.0698 (18)0.077 (2)0.0795 (18)0.0295 (17)0.0199 (15)0.0057 (16)
O40.127 (3)0.0594 (17)0.0620 (17)0.0228 (17)0.0460 (17)0.0118 (14)
O50.0844 (19)0.0737 (18)0.0501 (15)0.0090 (16)0.0004 (14)0.0174 (14)
N10.0429 (15)0.0467 (16)0.0466 (16)0.0038 (14)0.0095 (13)0.0067 (14)
N20.078 (2)0.0510 (18)0.0569 (19)0.0101 (16)0.0347 (17)0.0146 (15)
N30.0624 (19)0.0521 (19)0.0624 (19)0.0094 (16)0.0140 (16)0.0056 (16)
N40.107 (3)0.116 (4)0.056 (2)0.025 (3)0.027 (2)0.015 (2)
N50.0486 (16)0.0409 (16)0.0509 (16)0.0013 (13)0.0077 (13)0.0074 (13)
C10.0418 (19)0.0470 (19)0.0424 (19)0.0020 (16)0.0107 (16)0.0030 (15)
C20.053 (2)0.046 (2)0.062 (2)0.0042 (19)0.0190 (19)0.0042 (18)
C30.057 (2)0.047 (2)0.053 (2)0.0019 (18)0.0218 (18)0.0087 (17)
C40.080 (3)0.051 (2)0.058 (2)0.008 (2)0.031 (2)0.013 (2)
C50.071 (3)0.056 (2)0.071 (3)0.014 (2)0.037 (2)0.018 (2)
C60.059 (2)0.065 (3)0.093 (3)0.000 (2)0.026 (2)0.021 (3)
C70.054 (2)0.056 (2)0.054 (2)0.0060 (19)0.0054 (18)0.0090 (18)
C80.069 (3)0.064 (3)0.061 (2)0.001 (2)0.016 (2)0.004 (2)
C90.061 (2)0.082 (3)0.047 (2)0.008 (2)0.012 (2)0.001 (2)
C100.095 (3)0.109 (4)0.054 (3)0.013 (3)0.022 (3)0.004 (3)
C110.073 (3)0.093 (4)0.047 (2)0.014 (3)0.005 (2)0.017 (2)
C120.053 (2)0.070 (3)0.044 (2)0.005 (2)0.0044 (18)0.014 (2)
C130.051 (2)0.053 (2)0.051 (2)0.0027 (18)0.0046 (17)0.0153 (18)
C140.0437 (19)0.052 (2)0.049 (2)0.0028 (17)0.0092 (16)0.0082 (17)
C150.060 (2)0.048 (2)0.058 (2)0.0043 (18)0.0192 (19)0.0085 (18)
C160.071 (3)0.064 (3)0.060 (2)0.005 (2)0.013 (2)0.012 (2)
C170.100 (3)0.059 (3)0.081 (3)0.017 (2)0.007 (3)0.021 (2)
C180.094 (3)0.094 (4)0.056 (3)0.025 (3)0.005 (2)0.033 (3)
C190.091 (3)0.070 (3)0.100 (3)0.023 (3)0.006 (3)0.006 (3)
C200.083 (3)0.067 (3)0.074 (3)0.011 (2)0.036 (2)0.003 (2)
C210.0438 (19)0.050 (2)0.053 (2)0.0042 (17)0.0063 (16)0.0035 (17)
C220.047 (2)0.051 (2)0.052 (2)0.0033 (17)0.0077 (17)0.0039 (17)
C230.0468 (19)0.0442 (18)0.050 (2)0.0003 (16)0.0123 (16)0.0009 (16)
C240.068 (3)0.049 (2)0.070 (2)0.009 (2)0.003 (2)0.001 (2)
C250.085 (3)0.056 (2)0.089 (3)0.018 (2)0.003 (2)0.012 (2)
C260.059 (2)0.047 (2)0.070 (2)0.0059 (19)0.021 (2)0.0106 (19)
C270.072 (3)0.068 (3)0.053 (2)0.023 (2)0.007 (2)0.002 (2)
C280.067 (3)0.050 (2)0.046 (2)0.0169 (19)0.0103 (19)0.0089 (18)
C290.093 (3)0.065 (3)0.058 (2)0.014 (3)0.028 (2)0.003 (2)
C300.116 (4)0.075 (3)0.081 (3)0.034 (3)0.049 (3)0.013 (3)
C310.085 (3)0.084 (4)0.117 (4)0.019 (3)0.044 (3)0.031 (3)
C320.091 (4)0.070 (3)0.094 (3)0.001 (3)0.015 (3)0.003 (3)
C330.086 (3)0.055 (3)0.060 (2)0.010 (2)0.022 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C11.435 (4)C13—C161.385 (5)
O1—C31.451 (4)C13—C141.490 (5)
O2—C11.388 (4)C14—C151.340 (5)
O2—H10.8201C15—H110.9300
O3—C21.229 (4)C16—C171.428 (6)
O4—C41.230 (4)C16—H120.9300
O5—C221.246 (4)C17—C181.396 (6)
N1—C21.353 (4)C17—H130.9300
N1—C11.458 (4)C18—H140.9300
N1—C211.474 (4)C19—H150.9600
N2—C41.367 (5)C19—H160.9600
N2—C31.444 (4)C19—H170.9600
N2—H20.8600C20—H180.9600
N3—C191.472 (5)C20—H190.9600
N3—C71.472 (4)C20—H200.9600
N3—C61.477 (5)C21—C221.527 (5)
N4—C101.369 (6)C21—C271.547 (5)
N4—C111.378 (6)C21—H210.9800
N4—H30.8600C23—C241.519 (5)
N5—C221.334 (4)C23—H220.9800
N5—C261.475 (4)C24—C251.519 (6)
N5—C231.485 (4)C24—H230.9700
C1—C231.512 (5)C24—H240.9700
C2—C31.529 (5)C25—C261.514 (5)
C3—C201.515 (5)C25—H250.9700
C4—C51.530 (5)C25—H260.9700
C5—C151.503 (5)C26—H270.9700
C5—C61.542 (6)C26—H280.9700
C5—H40.9800C27—C281.495 (5)
C6—H50.9700C27—H290.9700
C6—H60.9700C27—H300.9700
C7—C141.539 (5)C28—C331.391 (5)
C7—C81.552 (5)C28—C291.395 (5)
C7—H70.9800C29—C301.387 (6)
C8—C91.506 (5)C29—H310.9300
C8—H80.9700C30—C311.366 (7)
C8—H90.9700C30—H320.9300
C9—C101.376 (5)C31—C321.370 (6)
C9—C121.407 (6)C31—H330.9300
C10—H100.9300C32—C331.378 (6)
C11—C181.379 (7)C32—H340.9300
C11—C121.406 (5)C33—H350.9300
C12—C131.400 (5)
C1—O1—C3111.6 (2)C5—C15—H11118.1
C1—O2—H1109.5C13—C16—C17119.8 (4)
C2—N1—C1112.7 (3)C13—C16—H12120.1
C2—N1—C21124.1 (3)C17—C16—H12120.1
C1—N1—C21122.8 (3)C18—C17—C16122.5 (4)
C4—N2—C3121.4 (3)C18—C17—H13118.7
C4—N2—H2119.3C16—C17—H13118.7
C3—N2—H2119.4C11—C18—C17117.5 (4)
C19—N3—C7111.6 (3)C11—C18—H14121.3
C19—N3—C6108.5 (3)C17—C18—H14121.3
C7—N3—C6112.0 (3)N3—C19—H15109.5
C10—N4—C11108.9 (4)N3—C19—H16109.5
C10—N4—H3125.7H15—C19—H16109.5
C11—N4—H3125.5N3—C19—H17109.5
C22—N5—C26122.0 (3)H15—C19—H17109.5
C22—N5—C23126.8 (3)H16—C19—H17109.5
C26—N5—C23111.1 (3)C3—C20—H18109.5
O2—C1—O1111.5 (3)C3—C20—H19109.5
O2—C1—N1112.8 (3)H18—C20—H19109.5
O1—C1—N1104.0 (2)C3—C20—H20109.5
O2—C1—C23109.2 (3)H18—C20—H20109.5
O1—C1—C23109.5 (3)H19—C20—H20109.5
N1—C1—C23109.8 (3)N1—C21—C22112.7 (3)
O3—C2—N1126.2 (3)N1—C21—C27113.2 (3)
O3—C2—C3126.1 (3)C22—C21—C27111.9 (3)
N1—C2—C3107.5 (3)N1—C21—H21106.1
N2—C3—O1108.9 (3)C22—C21—H21106.1
N2—C3—C20109.3 (3)C27—C21—H21106.1
O1—C3—C20110.9 (3)O5—C22—N5122.3 (3)
N2—C3—C2115.7 (3)O5—C22—C21119.1 (3)
O1—C3—C2103.4 (3)N5—C22—C21118.6 (3)
C20—C3—C2108.5 (3)N5—C23—C1108.8 (3)
O4—C4—N2122.1 (3)N5—C23—C24103.0 (3)
O4—C4—C5122.2 (4)C1—C23—C24117.8 (3)
N2—C4—C5115.7 (3)N5—C23—H22108.9
C15—C5—C4115.8 (3)C1—C23—H22108.9
C15—C5—C6109.0 (3)C24—C23—H22108.9
C4—C5—C6109.4 (3)C25—C24—C23103.0 (3)
C15—C5—H4107.4C25—C24—H23111.2
C4—C5—H4107.4C23—C24—H23111.2
C6—C5—H4107.4C25—C24—H24111.2
N3—C6—C5110.9 (3)C23—C24—H24111.2
N3—C6—H5109.5H23—C24—H24109.1
C5—C6—H5109.5C24—C25—C26105.8 (3)
N3—C6—H6109.5C24—C25—H25110.6
C5—C6—H6109.5C26—C25—H25110.6
H5—C6—H6108.0C24—C25—H26110.6
N3—C7—C14110.9 (3)C26—C25—H26110.6
N3—C7—C8110.3 (3)H25—C25—H26108.7
C14—C7—C8112.1 (3)N5—C26—C25104.0 (3)
N3—C7—H7107.8N5—C26—H27111.0
C14—C7—H7107.8C25—C26—H27111.0
C8—C7—H7107.8N5—C26—H28111.0
C9—C8—C7109.9 (3)C25—C26—H28111.0
C9—C8—H8109.7H27—C26—H28109.0
C7—C8—H8109.7C28—C27—C21117.6 (3)
C9—C8—H9109.7C28—C27—H29107.9
C7—C8—H9109.7C21—C27—H29107.9
H8—C8—H9108.2C28—C27—H30107.9
C10—C9—C12105.4 (4)C21—C27—H30107.9
C10—C9—C8136.4 (4)H29—C27—H30107.2
C12—C9—C8118.1 (3)C33—C28—C29117.0 (4)
N4—C10—C9110.3 (4)C33—C28—C27121.5 (4)
N4—C10—H10124.8C29—C28—C27121.5 (4)
C9—C10—H10124.8C30—C29—C28121.0 (4)
N4—C11—C18133.8 (4)C30—C29—H31119.5
N4—C11—C12106.2 (4)C28—C29—H31119.5
C18—C11—C12120.0 (4)C31—C30—C29120.6 (5)
C13—C12—C11123.4 (4)C31—C30—H32119.7
C13—C12—C9127.4 (3)C29—C30—H32119.7
C11—C12—C9109.2 (4)C30—C31—C32119.5 (5)
C16—C13—C12116.8 (3)C30—C31—H33120.3
C16—C13—C14127.0 (3)C32—C31—H33120.3
C12—C13—C14116.2 (3)C31—C32—C33120.4 (5)
C15—C14—C13123.6 (3)C31—C32—H34119.8
C15—C14—C7122.2 (3)C33—C32—H34119.8
C13—C14—C7114.2 (3)C32—C33—C28121.6 (4)
C14—C15—C5123.9 (4)C32—C33—H35119.2
C14—C15—H11118.1C28—C33—H35119.2
C3—O1—C1—O2115.5 (3)C9—C12—C13—C143.5 (5)
C3—O1—C1—N16.4 (3)C16—C13—C14—C1523.1 (6)
C3—O1—C1—C23123.6 (3)C12—C13—C14—C15159.1 (3)
C2—N1—C1—O2111.3 (3)C16—C13—C14—C7156.5 (4)
C21—N1—C1—O275.9 (4)C12—C13—C14—C721.3 (4)
C2—N1—C1—O19.6 (4)N3—C7—C14—C157.1 (5)
C21—N1—C1—O1163.2 (3)C8—C7—C14—C15130.9 (4)
C2—N1—C1—C23126.7 (3)N3—C7—C14—C13173.2 (3)
C21—N1—C1—C2346.1 (4)C8—C7—C14—C1349.5 (4)
C1—N1—C2—O3176.7 (4)C13—C14—C15—C5170.2 (3)
C21—N1—C2—O310.6 (6)C7—C14—C15—C59.4 (5)
C1—N1—C2—C38.9 (4)C4—C5—C15—C14113.1 (4)
C21—N1—C2—C3163.8 (3)C6—C5—C15—C1410.7 (5)
C4—N2—C3—O156.9 (4)C12—C13—C16—C171.0 (5)
C4—N2—C3—C20178.3 (3)C14—C13—C16—C17178.8 (4)
C4—N2—C3—C259.0 (5)C13—C16—C17—C180.5 (6)
C1—O1—C3—N2122.1 (3)N4—C11—C18—C17178.9 (4)
C1—O1—C3—C20117.6 (3)C12—C11—C18—C170.8 (7)
C1—O1—C3—C21.5 (4)C16—C17—C18—C110.5 (7)
O3—C2—C3—N262.1 (5)C2—N1—C21—C22154.1 (3)
N1—C2—C3—N2123.5 (3)C1—N1—C21—C2217.9 (4)
O3—C2—C3—O1178.9 (4)C2—N1—C21—C2777.7 (4)
N1—C2—C3—O14.5 (4)C1—N1—C21—C27110.3 (3)
O3—C2—C3—C2061.1 (5)C26—N5—C22—O54.5 (5)
N1—C2—C3—C20113.3 (3)C23—N5—C22—O5174.5 (3)
C3—N2—C4—O419.6 (6)C26—N5—C22—C21175.2 (3)
C3—N2—C4—C5157.6 (3)C23—N5—C22—C215.7 (5)
O4—C4—C5—C15117.7 (4)N1—C21—C22—O5175.5 (3)
N2—C4—C5—C1565.1 (5)C27—C21—C22—O546.7 (4)
O4—C4—C5—C6118.7 (4)N1—C21—C22—N54.2 (4)
N2—C4—C5—C658.5 (4)C27—C21—C22—N5133.1 (3)
C19—N3—C6—C5169.6 (3)C22—N5—C23—C133.7 (4)
C7—N3—C6—C566.7 (4)C26—N5—C23—C1147.2 (3)
C15—C5—C6—N347.1 (4)C22—N5—C23—C24159.5 (3)
C4—C5—C6—N380.4 (4)C26—N5—C23—C2421.4 (4)
C19—N3—C7—C14166.1 (3)O2—C1—C23—N574.8 (3)
C6—N3—C7—C1444.2 (4)O1—C1—C23—N5162.9 (2)
C19—N3—C7—C869.1 (4)N1—C1—C23—N549.3 (3)
C6—N3—C7—C8169.0 (3)O2—C1—C23—C2441.9 (4)
N3—C7—C8—C9176.1 (3)O1—C1—C23—C2480.4 (4)
C14—C7—C8—C952.0 (4)N1—C1—C23—C24166.0 (3)
C7—C8—C9—C10154.0 (5)N5—C23—C24—C2533.9 (4)
C7—C8—C9—C1228.8 (5)C1—C23—C24—C25153.6 (3)
C11—N4—C10—C90.5 (6)C23—C24—C25—C2635.2 (4)
C12—C9—C10—N40.9 (5)C22—N5—C26—C25178.9 (3)
C8—C9—C10—N4176.5 (4)C23—N5—C26—C250.2 (4)
C10—N4—C11—C18178.1 (5)C24—C25—C26—N522.0 (4)
C10—N4—C11—C120.1 (5)N1—C21—C27—C2865.2 (4)
N4—C11—C12—C13178.8 (3)C22—C21—C27—C2863.3 (4)
C18—C11—C12—C130.2 (6)C21—C27—C28—C3396.9 (4)
N4—C11—C12—C90.7 (5)C21—C27—C28—C2984.6 (4)
C18—C11—C12—C9177.8 (4)C33—C28—C29—C300.2 (5)
C10—C9—C12—C13179.0 (4)C27—C28—C29—C30178.3 (4)
C8—C9—C12—C131.0 (6)C28—C29—C30—C310.1 (6)
C10—C9—C12—C111.0 (4)C29—C30—C31—C321.0 (7)
C8—C9—C12—C11177.0 (3)C30—C31—C32—C331.4 (7)
C11—C12—C13—C160.7 (5)C31—C32—C33—C281.1 (6)
C9—C12—C13—C16178.4 (4)C29—C28—C33—C320.2 (5)
C11—C12—C13—C14178.7 (3)C27—C28—C33—C32178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.862.532.955 (4)112
N4—H3···O5i0.862.172.981 (5)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC33H35N5O5
Mr581.66
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.974 (3), 9.662 (2), 14.450 (4)
β (°) 105.059 (15)
V3)1479.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.1 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.879, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
20196, 2781, 2240
Rint0.087
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.093, 1.12
No. of reflections2781
No. of parameters390
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19
Absolute structureSyn

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.862.532.955 (4)112
N4—H3···O5i0.862.172.981 (5)157
Symmetry code: (i) x, y+1, z+1.
 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCrews, C., Anderson, W. A. C., Rees, G. & Krska, R. (2009). Food Addit. Contam. Part B, 2, 79–85.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, E. L. & Tolkachev, O. N. (2001). Pharm. Chem. J. 35, 37–45.  Google Scholar
First citationMerkel, S., Köppen, R., Koch, M., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMüller, C., Kemmlein, S., Klaffke, H., Krauthause, W., Preiss-Weigert, A. & Wittkowski, R. (2009). Mol. Nutr. Food Res. 53, 500–507.  Web of Science PubMed Google Scholar
First citationPakhomova, S., Ondráucek, J., Huusák, M., Kratochvíl, B., Jegorov, A. & Stuchlík, J. (1995). Acta Cryst. C51, 308–311.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPierri, L., Pitman, I. H., Rae, I. D., Winkler, D. A. & Andrews, P. R. (1982). J. Med. Chem. 25, 937–942.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoll, A. (1945). Helv. Chim. Acta, 28, 1283–1308.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o610-o611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds