organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o792-o793

4-[3,5-Bis(2-hy­dr­oxy­phen­yl)-1H-1,2,4-triazol-1-yl]benzoic acid di­methyl­formamide monosolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dJubilant Life Sciences Ltd, R&D Centre, C-26, Sector 59, Noida 201 301, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 January 2012; accepted 9 February 2012; online 24 February 2012)

In the mol­ecule of deferasirox dimethyl­formamide solvate, C21H15N3O4·C3H7NO, the central 1,2,4-triazole ring is tilted with respect to the benzoic acid and one of the 2-hy­droxy­phenyl units but coplanar with the other 2-hy­droxy­phenyl group, as indicated by the dihedral angles of 33.69 (9), 72.57 (8) and 5.18 (9)°, respectively. Intra­molecular O—H⋯N hydrogen bonds generate an S(6) ring motif. In the crystal, deferasirox mol­ecules are linked by O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions into chains along the c axis. The dimethyl­formamide solvent mol­ecules are located between the deferasirox chains and are linked to the deferasirox mol­ecules by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to, and applications of, deferasirox, see: Choudhry & Naithani (2007[Choudhry, V. P. & Naithani, R. (2007). Indian J. Pediatr. 74, 759-764.]); Lalitha Manasa et al. (2011[Lalitha Manasa, P., Shanmukh Kumar, J. V., Vijaya Saradhi, S. & Rajesh, V. (2011). Int. J. Pharm. Biomed. Res. 2, 1-3.]); Nick et al. (2003[Nick, H., Acklin, P., Lattmann, R., Buehlmayer, P., Hauffe, S., Schupp, J. & Alberti, D. (2003). Curr. Med. Chem. 10, 1065-1076.]); Yang et al. (2007[Yang, L. P., Keam, S. J. & Keating, G. M. (2007). Drugs, 67, 2211-2230.]). For related structures, see: Ishak et al. (2011[Ishak, D. H. A., Tajuddin, H. A., Abdullah, Z., Abd Halim, S. N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1658.]); Rajnikant et al. (2006[Rajnikant, , Dinesh, , Deshmukh, M. B. & Shawney, A. (2006). Acta Cryst. E62, o1373-o1374.]); Yathirajan et al. (2006[Yathirajan, H. S., Vijaya Raj, K. K., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o4444-o4445.], 2007[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o1398-o1399.]). For the stability of the temperature controller, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N3O4·C3H7NO

  • Mr = 446.46

  • Monoclinic, P 21 /c

  • a = 8.8172 (8) Å

  • b = 32.669 (3) Å

  • c = 7.6900 (7) Å

  • β = 94.901 (2)°

  • V = 2207.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.11 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.989

  • 18347 measured reflections

  • 6379 independent reflections

  • 4384 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.04

  • 6379 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 0.90 1.68 2.583 (3) 173
O3—H1O3⋯N2 0.91 (3) 1.83 (3) 2.645 (2) 148 (2)
O4—H1O4⋯N3ii 1.00 1.79 2.7548 (19) 161
C2—H2A⋯O2iii 0.95 2.51 3.340 (3) 146
C12—H12A⋯O1iv 0.95 2.59 3.436 (2) 149
C15—H15A⋯O4v 0.95 2.48 3.385 (2) 160
C22—H22A⋯O1vi 0.95 2.42 3.085 (3) 127
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2; (iv) x+1, y, z-1; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The main use of deferasirox (IUPAC name: [4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid) is to reduce chronic iron overload in patients who are receiving long-term blood transfusions. Reviews on the use of deferasirox (Yang et al., 2007) and its structure-activity properties (Nick et al., 2003) have been published. The current status of iron overload and chelation with deferasirox has been described (Choudhry & Naithani, 2007). Novel spectrophotometric methods for the determination of deferasirox have been reported (Lalitha Manasa et al., 2011). The crystal structures of 1-2-4-triazole derivatives have been reported (Ishak et al., 2011; Rajnikant et al., 2006; Yathirajan et al., 2006; 2007). In view of the importance of deferasirox, the crystal structure of the title compound (I) is reported.

The asymmetric unit of (I), C21H15N3O4.C3H7NO, comprises the deferasirox molecule and one dimethylformamide solvent molecule. In the deferasirox molecule, the central 1,2,4-triazole ring makes the dihedral angles of 33.69 (9), 5.18 (9) and 72.57 (8)° with the C1–C6, C10–C15 and C16–C21 benzene rings respectively, indicating that the 1,2,4-triazole ring is tilted with respect to the benzoic acid (C1–C6 ring) and one of the 2-hydroxyphenyl (C10–C15 ring) moieties, whereas it is co-planar with the other 2-hydroxyphenyl (C16–C21 ring) moiety.

An intramolecular O3—H1O3···N2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) which helps to stabilize the planarity of the 1,2,4-triazole and 2-hydroxyphenyl moiety (C10–C15/O3), with the r.m.s = 0.342 (2) Å for the twelve non-H atoms (C8–C15/N1–N3/O3). The dihedral angle between the two 2-hydroxyphenyl rings is 76.56 (8)°, whereas the C1–C6 ring of the benzoic acid makes the dihedral angles of 38.04 (9) and 67.34 (8)° with the C10–C15 and C16–C21 rings, respectively. Bond distances of (I) are in normal range (Allen et al., 1987) and comparable with the related structures (Ishak et al., (2011); Rajnikant et al., (2006) and Yathirajan et al., (2006; 2007).

In the crystal packing (Fig. 2), the molecules of deferasirox are linked by intermolecular O—H···N hydrogen bonds and weak C—H···O interactions (Table 1) into chains along the c axis. The dimethylformamide solvent molecules are located at the interstitials of the deferasirox chains and linked to the deferasirox molecules by O—H···O hydrogen bonds and weak C—H···O interactions (Fig. 2 and Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see Bernstein et al. (1995). For background to, and applications of, deferasirox, see: Choudhry & Naithani (2007); Lalitha Manasa et al. (2011); Nick et al. (2003); Yang et al. (2007). For related structures, see: Ishak et al. (2011); Rajnikant et al. (2006); Yathirajan et al. (2006, 2007). For the stability of the temperature controller, see Cosier & Glazer (1986).

Experimental top

The title compound was obtained as a gift sample from Jubilant Life Sciences, Noida, India. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from toluene/dimethylformamide (1:1 v/v) by slow evaporation of the solvent at room temperature after several days. Mp. 539–540 K.

Refinement top

Atom H1O3 of the hydroxy group was located from the difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.90 and 1.00 Å, d(C-H) = 0.95 Å for aromatic and sp2 CH, and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. For the sake of clarity, only H atoms involved in hydrogen bonds are shown. Hydrogen bonds are drawn as dashed lines.
4-[3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid dimethylformamide monosolvate top
Crystal data top
C21H15N3O4·C3H7NOF(000) = 936
Mr = 446.46Dx = 1.344 Mg m3
Monoclinic, P21/cMelting point = 539–540 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8172 (8) ÅCell parameters from 6379 reflections
b = 32.669 (3) Åθ = 2.3–30.0°
c = 7.6900 (7) ŵ = 0.10 mm1
β = 94.901 (2)°T = 100 K
V = 2207.0 (3) Å3Block, colorless
Z = 40.32 × 0.25 × 0.11 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6379 independent reflections
Radiation source: sealed tube4384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.970, Tmax = 0.989k = 4445
18347 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.5844P]
where P = (Fo2 + 2Fc2)/3
6379 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C21H15N3O4·C3H7NOV = 2207.0 (3) Å3
Mr = 446.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8172 (8) ŵ = 0.10 mm1
b = 32.669 (3) ÅT = 100 K
c = 7.6900 (7) Å0.32 × 0.25 × 0.11 mm
β = 94.901 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4384 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.989Rint = 0.038
18347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.59 e Å3
6379 reflectionsΔρmin = 0.56 e Å3
303 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33110 (15)0.08811 (4)1.31456 (16)0.0238 (3)
O20.3878 (3)0.02777 (5)1.2036 (2)0.0742 (8)
H1O20.35130.01991.30470.111*
O30.90883 (15)0.10202 (5)0.38917 (18)0.0311 (3)
H1O30.830 (3)0.1058 (8)0.456 (3)0.047*
O40.46909 (15)0.25263 (4)0.60966 (19)0.0306 (3)
H1O40.46930.27830.68080.046*
O50.2916 (3)0.00057 (5)0.4879 (2)0.0792 (8)
N10.52636 (15)0.14408 (4)0.56919 (18)0.0167 (3)
N20.64907 (15)0.13126 (5)0.48553 (18)0.0198 (3)
N30.52841 (16)0.18321 (4)0.33783 (18)0.0184 (3)
N40.1441 (3)0.01691 (6)0.7044 (2)0.0470 (5)
C10.4152 (2)0.08640 (5)1.0291 (2)0.0226 (4)
C20.4791 (3)0.06402 (6)0.8993 (3)0.0371 (5)
H2A0.49780.03560.91550.045*
C30.5156 (2)0.08293 (6)0.7465 (2)0.0302 (4)
H3A0.55860.06760.65790.036*
C40.48836 (18)0.12443 (5)0.7255 (2)0.0175 (3)
C50.42428 (19)0.14715 (5)0.8531 (2)0.0188 (3)
H5A0.40610.17560.83710.023*
C60.38716 (18)0.12784 (5)1.0040 (2)0.0176 (3)
H6A0.34200.14311.09120.021*
C70.3750 (2)0.06792 (5)1.1966 (2)0.0261 (4)
C80.45577 (18)0.17495 (5)0.4780 (2)0.0162 (3)
C90.64624 (18)0.15571 (5)0.3471 (2)0.0174 (3)
C100.75991 (18)0.15289 (5)0.2187 (2)0.0194 (3)
C110.88427 (19)0.12628 (6)0.2452 (2)0.0234 (4)
C120.9916 (2)0.12447 (7)0.1219 (3)0.0301 (4)
H12A1.07660.10660.14030.036*
C130.9752 (2)0.14846 (7)0.0266 (3)0.0300 (4)
H13A1.04850.14690.10990.036*
C140.8524 (2)0.17481 (6)0.0546 (2)0.0274 (4)
H14A0.84090.19110.15710.033*
C150.7463 (2)0.17722 (6)0.0682 (2)0.0228 (4)
H15A0.66310.19560.04990.027*
C160.31623 (19)0.19581 (5)0.5244 (2)0.0178 (3)
C170.3273 (2)0.23590 (5)0.5890 (2)0.0210 (3)
C180.1957 (2)0.25621 (6)0.6290 (2)0.0247 (4)
H18A0.20150.28360.67010.030*
C190.0568 (2)0.23642 (6)0.6089 (2)0.0253 (4)
H19A0.03230.25030.63760.030*
C200.0455 (2)0.19649 (6)0.5472 (2)0.0240 (4)
H20A0.05060.18320.53410.029*
C210.17560 (19)0.17613 (5)0.5049 (2)0.0203 (3)
H21A0.16870.14880.46270.024*
C220.2029 (3)0.02297 (7)0.5528 (3)0.0466 (6)
H22A0.17440.04720.49000.056*
C230.0407 (3)0.04676 (10)0.7700 (3)0.0563 (7)
H23A0.02770.06970.68820.085*
H23B0.08290.05680.88410.085*
H23C0.05830.03390.78190.085*
C240.1866 (6)0.01805 (8)0.8146 (4)0.0949 (15)
H24A0.26340.03430.76080.142*
H24B0.09650.03500.82770.142*
H24C0.22840.00850.92950.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (7)0.0215 (6)0.0185 (6)0.0024 (5)0.0092 (5)0.0005 (5)
O20.173 (2)0.0205 (8)0.0388 (9)0.0265 (11)0.0645 (12)0.0114 (7)
O30.0238 (6)0.0473 (9)0.0231 (7)0.0112 (6)0.0075 (5)0.0051 (6)
O40.0321 (7)0.0239 (7)0.0376 (8)0.0077 (6)0.0132 (6)0.0149 (6)
O50.182 (2)0.0248 (8)0.0402 (10)0.0076 (12)0.0640 (13)0.0047 (7)
N10.0168 (6)0.0176 (7)0.0166 (7)0.0009 (5)0.0056 (5)0.0007 (5)
N20.0170 (6)0.0253 (8)0.0178 (7)0.0018 (6)0.0064 (5)0.0001 (6)
N30.0219 (7)0.0173 (7)0.0167 (7)0.0017 (5)0.0052 (5)0.0009 (5)
N40.0819 (15)0.0402 (11)0.0216 (9)0.0273 (11)0.0198 (10)0.0057 (8)
C10.0319 (9)0.0205 (8)0.0167 (8)0.0051 (7)0.0089 (7)0.0024 (6)
C20.0672 (15)0.0212 (9)0.0263 (10)0.0179 (10)0.0233 (10)0.0075 (8)
C30.0477 (12)0.0240 (9)0.0214 (9)0.0136 (8)0.0182 (8)0.0032 (7)
C40.0181 (7)0.0200 (8)0.0149 (7)0.0009 (6)0.0033 (6)0.0021 (6)
C50.0235 (8)0.0163 (8)0.0168 (8)0.0009 (6)0.0032 (6)0.0006 (6)
C60.0198 (7)0.0179 (8)0.0154 (7)0.0006 (6)0.0037 (6)0.0020 (6)
C70.0399 (10)0.0202 (9)0.0197 (8)0.0056 (8)0.0113 (8)0.0036 (7)
C80.0186 (7)0.0147 (7)0.0158 (7)0.0021 (6)0.0037 (6)0.0018 (6)
C90.0153 (7)0.0202 (8)0.0170 (8)0.0013 (6)0.0032 (6)0.0016 (6)
C100.0167 (7)0.0250 (9)0.0171 (8)0.0035 (6)0.0052 (6)0.0031 (6)
C110.0191 (8)0.0336 (10)0.0179 (8)0.0009 (7)0.0037 (6)0.0016 (7)
C120.0201 (8)0.0467 (12)0.0243 (9)0.0035 (8)0.0067 (7)0.0028 (8)
C130.0228 (9)0.0455 (12)0.0233 (9)0.0048 (8)0.0109 (7)0.0042 (8)
C140.0284 (9)0.0344 (10)0.0205 (9)0.0069 (8)0.0083 (7)0.0000 (8)
C150.0219 (8)0.0253 (9)0.0219 (9)0.0031 (7)0.0057 (7)0.0009 (7)
C160.0222 (8)0.0171 (8)0.0146 (7)0.0029 (6)0.0052 (6)0.0004 (6)
C170.0284 (9)0.0180 (8)0.0177 (8)0.0004 (7)0.0076 (7)0.0005 (6)
C180.0355 (10)0.0189 (8)0.0205 (8)0.0063 (7)0.0076 (7)0.0010 (7)
C190.0279 (9)0.0282 (9)0.0209 (8)0.0104 (8)0.0074 (7)0.0011 (7)
C200.0217 (8)0.0292 (10)0.0216 (9)0.0030 (7)0.0053 (7)0.0008 (7)
C210.0241 (8)0.0193 (8)0.0181 (8)0.0009 (7)0.0061 (7)0.0001 (6)
C220.0835 (18)0.0346 (12)0.0241 (10)0.0237 (12)0.0197 (12)0.0027 (9)
C230.0472 (14)0.093 (2)0.0303 (12)0.0088 (14)0.0127 (11)0.0048 (13)
C240.222 (5)0.0290 (13)0.0438 (16)0.011 (2)0.069 (2)0.0036 (11)
Geometric parameters (Å, º) top
O1—C71.211 (2)C9—C101.468 (2)
O2—C71.317 (2)C10—C151.401 (2)
O2—H1O20.9032C10—C111.401 (2)
O3—C111.364 (2)C11—C121.397 (2)
O3—H1O30.91 (3)C12—C131.382 (3)
O4—C171.361 (2)C12—H12A0.9500
O4—H1O41.0018C13—C141.386 (3)
O5—C221.233 (3)C13—H13A0.9500
N1—C81.350 (2)C14—C151.387 (2)
N1—N21.3707 (18)C14—H14A0.9500
N1—C41.427 (2)C15—H15A0.9500
N2—C91.329 (2)C16—C211.393 (2)
N3—C81.327 (2)C16—C171.401 (2)
N3—C91.371 (2)C17—C181.394 (2)
N4—C221.331 (3)C18—C191.382 (3)
N4—C241.452 (4)C18—H18A0.9500
N4—C231.454 (4)C19—C201.389 (3)
C1—C61.387 (2)C19—H19A0.9500
C1—C21.394 (2)C20—C211.389 (2)
C1—C71.493 (2)C20—H20A0.9500
C2—C31.390 (3)C21—H21A0.9500
C2—H2A0.9500C22—H22A0.9500
C3—C41.384 (2)C23—H23A0.9800
C3—H3A0.9500C23—H23B0.9800
C4—C51.389 (2)C23—H23C0.9800
C5—C61.384 (2)C24—H24A0.9800
C5—H5A0.9500C24—H24B0.9800
C6—H6A0.9500C24—H24C0.9800
C8—C161.477 (2)
C7—O2—H1O2106.4C13—C12—H12A119.8
C11—O3—H1O3107.8 (16)C11—C12—H12A119.8
C17—O4—H1O4111.1C12—C13—C14120.40 (17)
C8—N1—N2109.37 (13)C12—C13—H13A119.8
C8—N1—C4129.99 (14)C14—C13—H13A119.8
N2—N1—C4120.61 (13)C13—C14—C15119.53 (18)
C9—N2—N1103.34 (13)C13—C14—H14A120.2
C8—N3—C9103.93 (14)C15—C14—H14A120.2
C22—N4—C24121.9 (2)C14—C15—C10121.02 (17)
C22—N4—C23120.4 (2)C14—C15—H15A119.5
C24—N4—C23117.6 (2)C10—C15—H15A119.5
C6—C1—C2119.39 (16)C21—C16—C17120.27 (15)
C6—C1—C7117.52 (15)C21—C16—C8120.88 (15)
C2—C1—C7123.10 (16)C17—C16—C8118.85 (15)
C3—C2—C1120.62 (17)O4—C17—C18123.84 (16)
C3—C2—H2A119.7O4—C17—C16116.90 (15)
C1—C2—H2A119.7C18—C17—C16119.26 (16)
C4—C3—C2118.93 (17)C19—C18—C17119.96 (17)
C4—C3—H3A120.5C19—C18—H18A120.0
C2—C3—H3A120.5C17—C18—H18A120.0
C3—C4—C5121.21 (16)C18—C19—C20121.00 (16)
C3—C4—N1119.21 (15)C18—C19—H19A119.5
C5—C4—N1119.58 (15)C20—C19—H19A119.5
C6—C5—C4119.24 (16)C19—C20—C21119.54 (17)
C6—C5—H5A120.4C19—C20—H20A120.2
C4—C5—H5A120.4C21—C20—H20A120.2
C5—C6—C1120.61 (15)C20—C21—C16119.95 (16)
C5—C6—H6A119.7C20—C21—H21A120.0
C1—C6—H6A119.7C16—C21—H21A120.0
O1—C7—O2122.90 (17)O5—C22—N4124.8 (2)
O1—C7—C1122.74 (16)O5—C22—H22A117.6
O2—C7—C1114.34 (16)N4—C22—H22A117.6
N3—C8—N1109.92 (14)N4—C23—H23A109.5
N3—C8—C16124.90 (15)N4—C23—H23B109.5
N1—C8—C16125.16 (14)H23A—C23—H23B109.5
N2—C9—N3113.43 (14)N4—C23—H23C109.5
N2—C9—C10122.24 (15)H23A—C23—H23C109.5
N3—C9—C10124.33 (15)H23B—C23—H23C109.5
C15—C10—C11118.88 (15)N4—C24—H24A109.5
C15—C10—C9120.31 (15)N4—C24—H24B109.5
C11—C10—C9120.80 (16)H24A—C24—H24B109.5
O3—C11—C12117.17 (17)N4—C24—H24C109.5
O3—C11—C10123.14 (15)H24A—C24—H24C109.5
C12—C11—C10119.68 (17)H24B—C24—H24C109.5
C13—C12—C11120.48 (18)
C8—N1—N2—C90.46 (17)N3—C9—C10—C154.8 (3)
C4—N1—N2—C9178.81 (14)N2—C9—C10—C115.3 (3)
C6—C1—C2—C30.5 (3)N3—C9—C10—C11174.57 (16)
C7—C1—C2—C3179.4 (2)C15—C10—C11—O3178.67 (17)
C1—C2—C3—C40.4 (3)C9—C10—C11—O30.7 (3)
C2—C3—C4—C50.6 (3)C15—C10—C11—C120.0 (3)
C2—C3—C4—N1179.67 (19)C9—C10—C11—C12179.37 (17)
C8—N1—C4—C3144.85 (19)O3—C11—C12—C13179.39 (18)
N2—N1—C4—C333.1 (2)C10—C11—C12—C130.6 (3)
C8—N1—C4—C534.9 (3)C11—C12—C13—C140.4 (3)
N2—N1—C4—C5147.16 (16)C12—C13—C14—C150.5 (3)
C3—C4—C5—C60.0 (3)C13—C14—C15—C101.1 (3)
N1—C4—C5—C6179.74 (15)C11—C10—C15—C140.9 (3)
C4—C5—C6—C10.8 (3)C9—C10—C15—C14179.77 (16)
C2—C1—C6—C51.1 (3)N3—C8—C16—C21106.5 (2)
C7—C1—C6—C5178.80 (17)N1—C8—C16—C2171.9 (2)
C6—C1—C7—O16.0 (3)N3—C8—C16—C1773.7 (2)
C2—C1—C7—O1173.9 (2)N1—C8—C16—C17107.98 (19)
C6—C1—C7—O2172.4 (2)C21—C16—C17—O4177.93 (15)
C2—C1—C7—O27.7 (3)C8—C16—C17—O41.9 (2)
C9—N3—C8—N10.40 (18)C21—C16—C17—C181.7 (2)
C9—N3—C8—C16178.18 (15)C8—C16—C17—C18178.41 (15)
N2—N1—C8—N30.56 (18)O4—C17—C18—C19178.03 (17)
C4—N1—C8—N3178.70 (15)C16—C17—C18—C191.6 (3)
N2—N1—C8—C16178.01 (15)C17—C18—C19—C200.7 (3)
C4—N1—C8—C160.1 (3)C18—C19—C20—C210.1 (3)
N1—N2—C9—N30.22 (18)C19—C20—C21—C160.0 (3)
N1—N2—C9—C10179.69 (15)C17—C16—C21—C200.9 (3)
C8—N3—C9—N20.10 (19)C8—C16—C21—C20179.18 (16)
C8—N3—C9—C10179.99 (15)C24—N4—C22—O53.3 (4)
N2—C9—C10—C15175.33 (16)C23—N4—C22—O5179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i0.901.682.583 (3)173
O3—H1O3···N20.91 (3)1.83 (3)2.645 (2)148 (2)
O4—H1O4···N3ii1.001.792.7548 (19)161
C2—H2A···O2iii0.952.513.340 (3)146
C12—H12A···O1iv0.952.593.436 (2)149
C15—H15A···O4v0.952.483.385 (2)160
C22—H22A···O1vi0.952.423.085 (3)127
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+1, y, z1; (v) x, y+1/2, z1/2; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H15N3O4·C3H7NO
Mr446.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8172 (8), 32.669 (3), 7.6900 (7)
β (°) 94.901 (2)
V3)2207.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.25 × 0.11
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
18347, 6379, 4384
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.144, 1.04
No. of reflections6379
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i0.901.682.583 (3)173
O3—H1O3···N20.91 (3)1.83 (3)2.645 (2)148 (2)
O4—H1O4···N3ii1.001.792.7548 (19)161
C2—H2A···O2iii0.952.513.340 (3)146
C12—H12A···O1iv0.952.593.436 (2)149
C15—H15A···O4v0.952.483.385 (2)160
C22—H22A···O1vi0.952.423.085 (3)127
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+1, y, z1; (v) x, y+1/2, z1/2; (vi) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

ASD thanks the University of Mysore for research facilities. SC thanks the Prince of Songkla University for generous support. The authors thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhry, V. P. & Naithani, R. (2007). Indian J. Pediatr. 74, 759–764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshak, D. H. A., Tajuddin, H. A., Abdullah, Z., Abd Halim, S. N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLalitha Manasa, P., Shanmukh Kumar, J. V., Vijaya Saradhi, S. & Rajesh, V. (2011). Int. J. Pharm. Biomed. Res. 2, 1–3.  Google Scholar
First citationNick, H., Acklin, P., Lattmann, R., Buehlmayer, P., Hauffe, S., Schupp, J. & Alberti, D. (2003). Curr. Med. Chem. 10, 1065–1076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajnikant, , Dinesh, , Deshmukh, M. B. & Shawney, A. (2006). Acta Cryst. E62, o1373–o1374.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L. P., Keam, S. J. & Keating, G. M. (2007). Drugs, 67, 2211–2230.  CrossRef PubMed CAS Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o1398–o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Vijaya Raj, K. K., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o4444–o4445.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o792-o793
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds