metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m326-m327

μ-4,4′-Bi­pyridine-bis­­[aqua­(4-hy­dr­oxy­pyridine-2,6-di­carboxyl­ato)copper(II)]

aShaanxi Key Laboratory of Chemical Reaction Engineering, Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: chenxiaoli003@163.com

(Received 27 January 2012; accepted 3 February 2012; online 24 February 2012)

The title compound, [Cu2(C7H3NO5)2(C10H8N2)(H2O)2], exhibits a centrosymmetric binuclear molecule. Each completely deprotonated 4-hy­droxy­pyridine-2,6-dicarb­oxy­lic acid mol­ecule assumes a tridentate chelating coordination mode. The square-pyramidal coordination geometry around the CuII ion is completed by the bridging bipyridine ligand and an apical water molecule. Adjacent complexes are connected via O—H⋯O and C—H⋯O hydrogen bonds to generate a three-dimensional supra­molecular structure.

Related literature

For related literature on the construction of supra­molecular structures, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Desiraju (1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For compounds using heterocyclic carb­oxy­lic acids such as pyridine-, pyrazole- and imidazole­carb­oxy­lic acids as building blocks, see: Lin et al. (1998[Lin, W. B., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272-13274.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cai, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934-936.]); Pan et al. (2000[Pan, L., Huang, X. Y., Li, J., Wu, Y. & Zheng, N. (2000). Angew. Chem. Int. Ed. 39, 527-530.]); Liu et al. (2004[Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Mahata & Natarajan (2005[Mahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156-2163.]); Panagiotis et al. (2005[Panagiotis, A., Jeff, W. K. & Vincent, L. P. (2005). Inorg. Chem. 44, 3626-3635.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3NO5)2(C10H8N2)(H2O)2]

  • Mr = 681.50

  • Monoclinic, P 21 /c

  • a = 8.3945 (9) Å

  • b = 18.433 (2) Å

  • c = 7.8686 (10) Å

  • β = 100.044 (2)°

  • V = 1198.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.579, Tmax = 0.629

  • 6528 measured reflections

  • 2433 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.09

  • 2433 reflections

  • 197 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.888 (3)
Cu1—N2 1.944 (3)
Cu1—O1 1.996 (2)
Cu1—O4 2.011 (2)
Cu1—O6 2.399 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.82 1.86 2.670 (3) 169
O6—H6B⋯O4ii 0.80 (2) 2.54 (3) 3.185 (3) 139 (3)
O6—H6B⋯O5ii 0.80 (2) 2.17 (2) 2.948 (3) 163 (4)
C12—H12⋯O3iii 0.93 2.58 3.246 (4) 129
C8—H8⋯O1 0.93 2.43 3.003 (4) 120
C12—H12⋯O4 0.93 2.59 3.142 (4) 118
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The self-assembled construction of supramolecular structure is of current interest because controlling the molecular organization in the solid state can lead to materials with novel structure and promising properties (Desiraju, 1989; Robin & Fromm, 2006). Supramolecular chemistry uses molecular recognition processes that rely heavily on the understanding of the recognition properties of the functional groups involved in these interactions. Recently, increasing investigations have been focused on the constructions of supramolecular structure using heterocyclic carboxylic acids such as pyridine- (Lin et al., 1998; Zhao et al.,2003), pyrazole- (Pan et al., 2000), and imidazole-carboxylic acids (Liu et al., 2004; Mahata & Natarajan, 2005; Panagiotis et al., 2005) as building blocks. These building blocks contain multi-oxygen and N atoms and can coordinate with metal ions in different ways, resulting in the formations of various metal–organic frameworks with specific topologies and useful properties. In this aspect, 4-hydroxypyridine-2,6-dicarboxylic acid (cam), which has six potential donor atoms, is a quite versatile ligand for the construction of metal–organic hybrid compounds. Herein we hydrothermally synthesized the title compound, which exhibits a binuclear structure (Fig. 1). The asymmetric unit consists of a Cu2+ ion, one cam2- ion, half 4,4'-bipy ligand, one coordinated water molecule. It is worth noting that each completely deprotonated cam2- ion coordinates one Cu2+ ion in a tridentate chelating coordination mode (Scheme 1). Interestingly, the adjacent binuclear complexes form a one-dimensional supramolecular chain via O3—H3···O6 hydrogen bonding interaction (Fig. 2), which is further involved in a three-dimensional supramolecular structure connected via O—H···O and C—H···O hydrogen bonding interactions (Fig. 3).

Related literature top

For related literature on the construction of supramolecular structure, see: Robin & Fromm (2006); Desiraju (1989). For compounds using heterocyclic carboxylic acids such as pyridine-, pyrazole- and imidazolecarboxylic acids as building blocks, see: Lin et al. (1998); Zhao et al. (2003); Pan et al. (2000); Liu et al. (2004); Mahata & Natarajan (2005); Panagiotis et al. (2005).

Experimental top

The compound (I) was prepared by hydrothermal method. A mixture of CuSO4.5H2O (0.10 mmol), 4,4'-bipyridine (0.10 mmol), 4-hydroxypyridine-2,6-dicarboxylic acid (cam 0.10 mmol) and water (10 ml) was stirred for 30 min. The mixture was then transferred to a 23 ml Teflon-lined autoclave and kept at 433 K for 72 h under autogenous pressure. Then the mixture was cooled to room temperature slowly. Blue single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement top

The H atoms of phenyl ring were included in the riding approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms attached to O were located from a difference Fourier map and refined isotropically to O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and labeling of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 2 - x, 1 - y, -z]
[Figure 2] Fig. 2. The one-dimensional supramolecular chain formed via hydrogen bonding interactions. Dashed lines denote hydrogen bonds.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure, viewed in the ac plane, linked via hydrogen bonding interactions. Dashed lines denote hydrogen bonds.
µ-4,4'-Bipyridine-bis[aqua(4-hydroxypyridine-2,6-dicarboxylato)copper(II)] top
Crystal data top
[Cu2(C7H3NO5)2(C10H8N2)(H2O)2]F(000) = 688
Mr = 681.50Dx = 1.888 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2433 reflections
a = 8.3945 (9) Åθ = 2.2–26.4°
b = 18.433 (2) ŵ = 1.85 mm1
c = 7.8686 (10) ÅT = 296 K
β = 100.044 (2)°Prism, blue
V = 1198.9 (2) Å30.30 × 0.25 × 0.25 mm
Z = 2
Data collection top
Bruker SMART 1000
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.579, Tmax = 0.629k = 2023
6528 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
2433 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C7H3NO5)2(C10H8N2)(H2O)2]V = 1198.9 (2) Å3
Mr = 681.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3945 (9) ŵ = 1.85 mm1
b = 18.433 (2) ÅT = 296 K
c = 7.8686 (10) Å0.30 × 0.25 × 0.25 mm
β = 100.044 (2)°
Data collection top
Bruker SMART 1000
diffractometer
2433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1972 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.629Rint = 0.041
6528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.44 e Å3
2433 reflectionsΔρmin = 0.60 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.47889 (5)0.38222 (2)0.23311 (6)0.03017 (17)
N10.2865 (3)0.34582 (14)0.2945 (4)0.0261 (6)
N20.6518 (3)0.42601 (15)0.1330 (4)0.0300 (7)
O10.3886 (3)0.47502 (11)0.3063 (3)0.0332 (6)
O20.1826 (3)0.51815 (12)0.4202 (4)0.0377 (7)
O30.1274 (3)0.26614 (12)0.4182 (4)0.0463 (8)
H30.18580.29840.44430.069*
O40.4981 (3)0.27793 (12)0.1646 (4)0.0386 (7)
O50.3903 (3)0.16954 (12)0.1994 (4)0.0428 (7)
C10.2557 (4)0.46880 (17)0.3631 (5)0.0280 (8)
C20.1880 (4)0.39256 (16)0.3559 (4)0.0245 (7)
C30.0461 (4)0.36900 (17)0.4026 (5)0.0292 (8)
H3A0.02230.40100.44620.035*
C40.0081 (4)0.29506 (17)0.3821 (5)0.0305 (8)
C50.1158 (4)0.24840 (18)0.3192 (5)0.0318 (8)
H50.09250.19920.30600.038*
C60.2553 (4)0.27552 (17)0.2772 (5)0.0266 (8)
C70.3911 (4)0.23570 (19)0.2084 (5)0.0316 (8)
C80.6991 (4)0.49448 (19)0.1714 (5)0.0369 (9)
H80.63840.52290.23410.044*
C90.8328 (4)0.52411 (18)0.1222 (5)0.0363 (9)
H90.86210.57150.15420.044*
C100.9259 (4)0.48484 (17)0.0252 (4)0.0276 (8)
C110.8717 (4)0.41528 (19)0.0187 (5)0.0377 (10)
H110.92750.38670.08610.045*
C120.7374 (5)0.38763 (18)0.0353 (5)0.0399 (10)
H120.70440.34070.00300.048*
O60.6528 (3)0.35779 (13)0.5027 (4)0.0359 (6)
H6A0.689 (4)0.3975 (13)0.543 (5)0.043*
H6B0.593 (4)0.3429 (19)0.564 (4)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0234 (3)0.0274 (3)0.0441 (3)0.00220 (18)0.0182 (2)0.00282 (19)
N10.0228 (15)0.0241 (14)0.0344 (17)0.0011 (12)0.0136 (13)0.0017 (13)
N20.0243 (15)0.0311 (16)0.0384 (18)0.0006 (12)0.0161 (14)0.0009 (13)
O10.0278 (13)0.0223 (12)0.0547 (17)0.0030 (10)0.0215 (12)0.0014 (11)
O20.0336 (14)0.0254 (13)0.0598 (19)0.0023 (11)0.0238 (13)0.0090 (12)
O30.0297 (14)0.0281 (13)0.088 (2)0.0026 (11)0.0305 (15)0.0064 (15)
O40.0310 (14)0.0336 (14)0.0572 (18)0.0015 (11)0.0239 (13)0.0100 (13)
O50.0412 (16)0.0261 (14)0.0638 (19)0.0039 (12)0.0165 (14)0.0095 (13)
C10.0260 (18)0.0241 (17)0.035 (2)0.0014 (14)0.0094 (16)0.0017 (15)
C20.0203 (17)0.0250 (17)0.0291 (19)0.0006 (13)0.0071 (14)0.0002 (14)
C30.0216 (18)0.0296 (18)0.038 (2)0.0019 (14)0.0108 (16)0.0018 (16)
C40.0226 (18)0.0265 (18)0.044 (2)0.0029 (14)0.0109 (16)0.0042 (16)
C50.0311 (19)0.0220 (17)0.045 (2)0.0010 (15)0.0144 (17)0.0022 (16)
C60.0243 (18)0.0223 (17)0.035 (2)0.0001 (14)0.0091 (15)0.0002 (15)
C70.029 (2)0.034 (2)0.033 (2)0.0039 (16)0.0077 (16)0.0084 (16)
C80.037 (2)0.0298 (19)0.050 (3)0.0017 (16)0.0242 (19)0.0058 (18)
C90.037 (2)0.0253 (18)0.051 (2)0.0088 (16)0.0220 (19)0.0089 (17)
C100.0269 (19)0.0270 (18)0.032 (2)0.0004 (15)0.0120 (16)0.0057 (15)
C110.034 (2)0.0312 (19)0.055 (3)0.0020 (16)0.0280 (19)0.0057 (18)
C120.040 (2)0.0288 (19)0.057 (3)0.0072 (17)0.027 (2)0.0071 (18)
O60.0350 (16)0.0296 (13)0.0482 (18)0.0092 (11)0.0211 (13)0.0041 (12)
Geometric parameters (Å, º) top
Cu1—N11.888 (3)C3—C41.403 (4)
Cu1—N21.944 (3)C3—H3A0.9300
Cu1—O11.996 (2)C4—C51.400 (4)
Cu1—O42.011 (2)C5—C61.365 (4)
Cu1—O62.399 (3)C5—H50.9300
N1—C61.324 (4)C6—C71.532 (4)
N1—C21.341 (4)C8—C91.363 (4)
N2—C121.342 (4)C8—H80.9300
N2—C81.342 (4)C9—C101.388 (4)
O1—C11.277 (4)C9—H90.9300
O2—C11.226 (4)C10—C111.384 (5)
O3—C41.330 (4)C10—C10i1.480 (6)
O3—H30.8200C11—C121.370 (5)
O4—C71.280 (4)C11—H110.9300
O5—C71.222 (4)C12—H120.9300
C1—C21.513 (4)O6—H6A0.834 (18)
C2—C31.377 (4)O6—H6B0.804 (18)
N1—Cu1—N2169.74 (13)O3—C4—C3123.4 (3)
N1—Cu1—O181.12 (10)C5—C4—C3119.3 (3)
N2—Cu1—O196.27 (10)C6—C5—C4119.7 (3)
N1—Cu1—O480.85 (10)C6—C5—H5120.2
N2—Cu1—O4100.83 (10)C4—C5—H5120.2
O1—Cu1—O4161.60 (9)N1—C6—C5119.7 (3)
N1—Cu1—O697.05 (10)N1—C6—C7111.0 (3)
N2—Cu1—O693.09 (10)C5—C6—C7129.2 (3)
O1—Cu1—O696.24 (10)O5—C7—O4126.0 (3)
O4—Cu1—O689.58 (10)O5—C7—C6120.1 (3)
C6—N1—C2122.8 (3)O4—C7—C6113.8 (3)
C6—N1—Cu1119.0 (2)N2—C8—C9122.6 (3)
C2—N1—Cu1118.2 (2)N2—C8—H8118.7
C12—N2—C8117.3 (3)C9—C8—H8118.7
C12—N2—Cu1121.7 (2)C8—C9—C10121.2 (3)
C8—N2—Cu1120.8 (2)C8—C9—H9119.4
C1—O1—Cu1115.01 (19)C10—C9—H9119.4
C4—O3—H3109.5C11—C10—C9115.4 (3)
C7—O4—Cu1114.6 (2)C11—C10—C10i122.6 (4)
O2—C1—O1125.8 (3)C9—C10—C10i122.1 (4)
O2—C1—C2119.6 (3)C12—C11—C10121.3 (3)
O1—C1—C2114.6 (3)C12—C11—H11119.3
N1—C2—C3120.7 (3)C10—C11—H11119.3
N1—C2—C1111.0 (3)N2—C12—C11122.2 (3)
C3—C2—C1128.3 (3)N2—C12—H12118.9
C2—C3—C4117.8 (3)C11—C12—H12118.9
C2—C3—H3A121.1Cu1—O6—H6A107 (3)
C4—C3—H3A121.1Cu1—O6—H6B104 (3)
O3—C4—C5117.3 (3)H6A—O6—H6B107 (4)
N2—Cu1—N1—C6103.6 (6)O1—C1—C2—N11.8 (5)
O1—Cu1—N1—C6179.6 (3)O2—C1—C2—C31.9 (6)
O4—Cu1—N1—C63.3 (3)O1—C1—C2—C3178.0 (3)
O6—Cu1—N1—C685.2 (3)N1—C2—C3—C40.5 (5)
N2—Cu1—N1—C277.2 (7)C1—C2—C3—C4179.2 (3)
O1—Cu1—N1—C21.2 (3)C2—C3—C4—O3178.2 (3)
O4—Cu1—N1—C2177.5 (3)C2—C3—C4—C51.2 (5)
O6—Cu1—N1—C294.1 (3)O3—C4—C5—C6178.9 (3)
N1—Cu1—N2—C1293.6 (7)C3—C4—C5—C60.6 (6)
O1—Cu1—N2—C12168.3 (3)C2—N1—C6—C51.6 (5)
O4—Cu1—N2—C124.9 (3)Cu1—N1—C6—C5179.3 (3)
O6—Cu1—N2—C1295.1 (3)C2—N1—C6—C7178.6 (3)
N1—Cu1—N2—C892.1 (7)Cu1—N1—C6—C70.6 (4)
O1—Cu1—N2—C817.4 (3)C4—C5—C6—N10.8 (5)
O4—Cu1—N2—C8169.4 (3)C4—C5—C6—C7179.4 (4)
O6—Cu1—N2—C879.2 (3)Cu1—O4—C7—O5170.6 (3)
N1—Cu1—O1—C12.3 (3)Cu1—O4—C7—C69.4 (4)
N2—Cu1—O1—C1172.2 (3)N1—C6—C7—O5173.3 (3)
O4—Cu1—O1—C113.9 (5)C5—C6—C7—O56.9 (6)
O6—Cu1—O1—C193.9 (3)N1—C6—C7—O46.8 (5)
N1—Cu1—O4—C77.3 (3)C5—C6—C7—O4173.1 (4)
N2—Cu1—O4—C7177.1 (3)C12—N2—C8—C93.2 (6)
O1—Cu1—O4—C719.0 (5)Cu1—N2—C8—C9171.4 (3)
O6—Cu1—O4—C789.9 (3)N2—C8—C9—C101.5 (6)
Cu1—O1—C1—O2177.3 (3)C8—C9—C10—C111.0 (6)
Cu1—O1—C1—C22.8 (4)C8—C9—C10—C10i178.2 (4)
C6—N1—C2—C30.9 (5)C9—C10—C11—C121.6 (6)
Cu1—N1—C2—C3179.9 (3)C10i—C10—C11—C12177.5 (4)
C6—N1—C2—C1179.3 (3)C8—N2—C12—C112.5 (6)
Cu1—N1—C2—C10.1 (4)Cu1—N2—C12—C11172.0 (3)
O2—C1—C2—N1178.2 (3)C10—C11—C12—N20.1 (6)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6ii0.821.862.670 (3)169
O6—H6B···O4iii0.80 (2)2.54 (3)3.185 (3)139 (3)
O6—H6B···O5iii0.80 (2)2.17 (2)2.948 (3)163 (4)
C12—H12···O3iv0.932.583.246 (4)129
C8—H8···O10.932.433.003 (4)120
C12—H12···O40.932.593.142 (4)118
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3NO5)2(C10H8N2)(H2O)2]
Mr681.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3945 (9), 18.433 (2), 7.8686 (10)
β (°) 100.044 (2)
V3)1198.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.579, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
6528, 2433, 1972
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.09
No. of reflections2433
No. of parameters197
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.888 (3)Cu1—O42.011 (2)
Cu1—N21.944 (3)Cu1—O62.399 (3)
Cu1—O11.996 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.821.862.670 (3)169.1
O6—H6B···O4ii0.804 (18)2.54 (3)3.185 (3)139 (3)
O6—H6B···O5ii0.804 (18)2.17 (2)2.948 (3)163 (4)
C12—H12···O3iii0.932.583.246 (4)129.1
C8—H8···O10.932.433.003 (4)119.7
C12—H12···O40.932.593.142 (4)118.3
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 21101133) and the Natural Science Foundation of the Educational Bureau of Shaanxi Province (grant No. 11JK0565).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationLin, W. B., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272–13274.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationMahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156–2163.  Web of Science CSD CrossRef Google Scholar
First citationPan, L., Huang, X. Y., Li, J., Wu, Y. & Zheng, N. (2000). Angew. Chem. Int. Ed. 39, 527–530.  CrossRef CAS Google Scholar
First citationPanagiotis, A., Jeff, W. K. & Vincent, L. P. (2005). Inorg. Chem. 44, 3626–3635.  Web of Science PubMed Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cai, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m326-m327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds