organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Tryptophan 4-nitro­phenol tris­­olvate

aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, and bDepartamento de Física, Universidade do Minho, P-4710-057 Braga, Portugal
*Correspondence e-mail: vhugo@fis.uc.pt

(Received 31 January 2012; accepted 21 February 2012; online 29 February 2012)

The title compound, C11H12N2O2·3C6H5NO3, comprises a zwitterionic amino acid formed by two nearly planar groups: (i) the indole ring and Cβ, and (ii) the carboxyl group, Cα, as well as the amine N atom, with r.m.s. deviations of 0.0084 and 0.0038 Å, respectively. The angle between these idealized planes is 39.47 (9)°. The amine group of the amino acid is in a syn (−sc) arrangement relative to the ring system. The overall crystal structure results from the packing of sheets parallel to the (001) planes. These sheets are formed by a pair of screw axis related parallel networks bound by hydrogen-bond and ππ stacking interactions. The intermolecular cohesion of all organic residues in each of the latter two-dimensional networks is achieved via strong hydrogen bonding, nitro–π and ππ stacking interactions.

Related literature

For a general review on nonlinear optical properties of organic mol­ecules and crystals, see: Chemla & Zyss (1987[Chemla, D. S. & Zyss, J. (1987). Editors. Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1. New York: Academic Press.]); Zyss & Ledoux (1994[Zyss, J. & Ledoux, I. (1994). Chem. Rev. 94, 77-105.]); Zyss & Nicoud (1996[Zyss, J. & Nicoud, J. F. (1996). Curr. Opin. Solid State Mater. Sci. 1, 533-546.]). For similar and most common conformations of L-tryptophan, see: Bye et al. (1973[Bye, E., Mostad, A. & Romming, C. (1973). Acta Chem. Scand. 27, 471-484.]); Bakke & Mostad (1980[Bakke, O. & Mostad, A. (1980). Acta Chem. Scand. Ser. B, 34, 559-570.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For information on optical second harmonic generation (SHG) measurements, see: Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. J. (1968). J. Appl. Phys. 19, 3768-3813.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O2·3C6H5NO3

  • Mr = 621.56

  • Monoclinic, P 21

  • a = 13.0321 (9) Å

  • b = 6.7332 (4) Å

  • c = 17.3091 (10) Å

  • β = 104.479 (3)°

  • V = 1470.59 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 K

  • 0.3 × 0.2 × 0.15 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.980

  • 94463 measured reflections

  • 4289 independent reflections

  • 2984 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.04

  • 4289 reflections

  • 410 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O21 0.89 2.10 2.970 (2) 165
N1—H1C⋯O1i 0.89 1.86 2.743 (2) 172
O43—H43A⋯O2ii 0.82 1.81 2.623 (2) 171
O23—H23A⋯O32ii 0.82 2.08 2.820 (3) 150
O33—H33A⋯O2iii 0.82 1.88 2.687 (2) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x-1, y-1, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Non-linear optical phenomena (NLO) form the basis for a wide range of devices including frequency doublers, electro-optic modulators, optical limiters, high speed optical gates and parametric amplifiers. Organic molecules containing π electron systems asymetrized by donor and acceptor groups are highly polarizable entities which may give rise to organic polar crystals for NLO applications. The properties of individual molecules and their organization in the bulk crystalline structure are the key factors that determine the properties of the resulting molecular materials. An essential condition to obtain even-order NLO processes in materials is a noncentrosymmetric crystal structure. However, optimal molecular orientations are required if appreciable effects are to be achieved in molecular materials (Chemla & Zyss, 1987; Zyss & Ledoux, 1994; Zyss & Nicoud, 1996). In this context the crystal structure of the title compound resulting from co-crystallization of a chiral molecule, L-tryptophan, and p-nitrophenol, which has a high ground state dipole moment is reported. No other crystal structures with three neutral independent p-nitrophenol molecules were found in a search to the CSD database, version 1.13 (Allen, 2002).

The aminoacid is a zwitterion with overall neutral charge, which means that no Brønsted-Lowry acid-base reaction has occurred between L-tryptophan and p-nitrophenol molecules; this is further confirmed by inspection and comparison of all three C–O distances of the p-nitrophenol molecules which range from 1.341 (3) Å to 1.351 (3) Å.

The L-tryptophan has a conformation similar to the one found in the L-form of DL-formate (Bye et al., 1973), with the amine group in a syn (-sc) arrangement relative to the indole and, as in most cases (Bakke & Mostad, 1980), with C1 trans to C4. The zwitterion can be divided in two planar groups forming an angle of 39.47 (9)°. The first group consists of the indole ring and C3; the second group includes the carboxyl group and the amine N atom. Root mean square deviations of the atoms in these latter planes are 0.0084 and 0.0038 Å, respectively.

Hydrogen bonded two-dimensional networks, parallel to the (001) planes, involving all four independent molecules, can be found in the crystal structure of the title compound. Figure 2 shows such a two-dimensional network of H-bonded, nitro-π and π-π stacked molecules. In the latter networks, chains formed by the aminoacid and one p-nitrophenol (X41—X46, where X stands for C, N or O) running along the a axis can be found. These chains are linked through two H-bonds: N1–H1A···O41i or N1–H1A···O42i and O43–H43A···O2iv. Other chains, formed by the same aminoacid and p-nitrophenol molecules, with a more mirregular shape, run along the b axis and are also connected through two H-bonds: the same bifurcated N1–H1A···O41i or N1–H1A···O42i and N2–H2A···O42. The other two p-nitrophenol molecules (X21—X26 and X31—X36, where X stands for C, N or O) can be seen as dimmers, H-bonded via O23–H23A···O32iv, that connect to the latter mdescribed base of perpendicularly running chains through H-bonds N1–H1B···O21, N2–H2A···O22iii and O33–H33···O2iii. All but one of the H-bonds found are used to build the two-dimensional network, which includes all the molecules present in the assymetric unit. Nitro-π and π-π interactions further stabilize the stacking of the latter dimmers and the indole ring along the a axis, via N31–O31···CgC21—C26v, N21–O21···Cgpyrrole, N21–O21···Cgind. benz. and correspondent ππ intermolecular contacts. Geometric details of the π-π and nitro-π interactions can be found in tables A and B. An H-bonded and also π-π stacked pair of the latter two-dimensional networks (screw axis related to each other), constitutes a sheet (parallel to the (001) planes); the relevant intermolecular contacts in the binding of this pair of neighbouring two-dimensional networks are the H-bond N1–H1C···O1ii and π-π stacking interactions Cgind. benz.···CgC21—C26vi and CgC41—C46···CgC41—C46vii (geometric details can be found in table A). The overall three-dimensional structure can be viewed as a repetition along the c axis of the latter sheets, as shown in Fig. 3.

Optical second harmonic generation (SHG) was measured on polycrystalline samples using the standard Kurtz and Perry technique (Kurtz and Perry, 1968). The material was particle sized using a set of standard microsieves (Retsch) having mesh width between 50 µm and 160µm. The sample cell consisted of a microscope slide with a depression of 3 mm diameter and 0.5 mm thickness covered with a flat microscope slide. The generated second harmonic signal was compared with that generated by polycrystalline urea with the same grain size and similar sample preparation. The L-tryptophan tris(4-nitrophenol) SHG response was twice that of urea.

Symmetry codes: (i) x, y + 1, 1 - z; (ii) -x + 1, y - 1/2, -z; (iii) x ,y - 1, z; (iv) x - 1, y - 1, z; (v) x + 1, y, z; (vi) -x + 1, y + 1/2, -z + 1; (vii) -x, y + 1/2, -z.

Related literature top

For a general review on nonlinear optical properties of organic molecules and crystals, see: Chemla & Zyss (1987); Zyss & Ledoux (1994); Zyss & Nicoud (1996). For similar and most common conformations of l-tryptophan, see: Bye et al. (1973); Bakke & Mostad (1980). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

Single crystals were produced by dissolving 5.0 mmol of L-tryptophan and 10 mmol of p-nitrophenol in 30 ml of hot methanol. Yellow needles were formed by slow cooling at room temperature.

Refinement top

The structure was solved by direct methods using SHELXS97 (Sheldrick, 2008). All H(C/N) atoms were placed at idealized positions and refined as riding [C—H=0.93 (aromatic C)— 0.98Å, Uiso(H)=1.2Ueq(C); N—H=0.89Å and Uiso(H)=1.5Ueq(N) (amino N), N—H=0.86Å and Uiso(H)=1.2Ueq(N) (aromatic N)]. Hydroxyl H atoms have been positioned and refined using HFIX 147 with SHELXL (Sheldrick, 2008).

Examination of the crystal structure with PLATON (Spek, 2009) showed that there are no solvent-accessible voids in the crystal lattice.

The refined model structure is non-centrosymmetric with only atoms which are poor anomalous scatterers for the wavelength used, therefore Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Representation of the two-dimensional networks, paralell to the (001) planes, of H-bonded molecules. Different sorts of chains can be individualized. Nitro-π and π-π stacking are also evident.
[Figure 3] Fig. 3. ac face view, showing the layered packing along the c axis of the two-dimensional networks parallel to (001) (shown in Fig. 2). H-bonded and ππ stacked pairs of screw axis related networks are visible.
L-Tryptophan 4-nitrophenol trisolvate top
Crystal data top
C11H12N2O2·3C6H5NO3F(000) = 648
Mr = 621.56Dx = 1.404 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8205 reflections
a = 13.0321 (9) Åθ = 2.6–25.8°
b = 6.7332 (4) ŵ = 0.11 mm1
c = 17.3091 (10) ÅT = 291 K
β = 104.479 (3)°Block, yellow
V = 1470.59 (16) Å30.3 × 0.2 × 0.15 mm
Z = 2
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
4289 independent reflections
Radiation source: fine-focus sealed tube2984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.9°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1817
Tmin = 0.915, Tmax = 0.980k = 89
94463 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.0968P]
where P = (Fo2 + 2Fc2)/3
4289 reflections(Δ/σ)max < 0.001
410 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C11H12N2O2·3C6H5NO3V = 1470.59 (16) Å3
Mr = 621.56Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.0321 (9) ŵ = 0.11 mm1
b = 6.7332 (4) ÅT = 291 K
c = 17.3091 (10) Å0.3 × 0.2 × 0.15 mm
β = 104.479 (3)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
4289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2984 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.980Rint = 0.031
94463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
4289 reflectionsΔρmin = 0.15 e Å3
410 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53801 (10)1.2043 (3)0.02152 (8)0.0593 (4)
O20.68508 (10)1.2042 (3)0.12018 (8)0.0595 (4)
C10.59036 (14)1.1548 (3)0.08874 (11)0.0431 (4)
C20.53789 (12)1.0190 (3)0.13787 (10)0.0387 (4)
H20.53271.08940.18630.046*
N10.42901 (10)0.9709 (3)0.08966 (9)0.0411 (3)
H1A0.39691.08180.06830.062*
H1B0.39210.91590.12090.062*
H1C0.43300.88640.05100.062*
C30.60036 (14)0.8278 (3)0.16154 (11)0.0457 (4)
H3A0.60820.76140.11360.055*
H3B0.67070.86110.19330.055*
C40.55002 (14)0.6876 (3)0.20785 (11)0.0441 (4)
C50.48396 (16)0.5339 (3)0.17877 (11)0.0507 (5)
H50.46310.49720.12530.061*
N20.45239 (15)0.4408 (3)0.23941 (10)0.0573 (4)
H2A0.41100.33960.23420.069*
C60.49761 (16)0.5353 (3)0.30952 (11)0.0511 (5)
C70.48737 (19)0.4966 (4)0.38646 (13)0.0653 (6)
H70.44650.39180.39710.078*
C80.5409 (2)0.6214 (6)0.44572 (14)0.0815 (8)
H80.53560.60070.49770.098*
C90.6023 (2)0.7764 (6)0.43064 (13)0.0840 (9)
H90.63720.85710.47260.101*
C100.61303 (18)0.8147 (5)0.35448 (13)0.0666 (6)
H100.65520.91870.34500.080*
C110.55904 (15)0.6934 (3)0.29236 (11)0.0470 (4)
O410.24461 (14)0.2491 (4)0.00160 (14)0.0952 (7)
O420.25999 (13)0.2738 (4)0.12387 (14)0.0957 (6)
N410.20582 (15)0.2621 (3)0.05568 (14)0.0674 (5)
C410.09109 (14)0.2606 (3)0.04219 (12)0.0481 (4)
C420.02939 (15)0.2653 (3)0.03489 (12)0.0526 (5)
H420.06060.26730.07770.063*
C430.07909 (15)0.2669 (3)0.04782 (11)0.0506 (5)
H430.12170.27290.09960.061*
C440.12507 (14)0.2595 (3)0.01613 (11)0.0472 (4)
O430.23142 (11)0.2620 (3)0.00108 (10)0.0700 (5)
H43A0.25100.24260.03980.105*
C450.06176 (15)0.2499 (3)0.09340 (11)0.0479 (4)
H450.09270.24220.13620.058*
C460.04710 (15)0.2517 (3)0.10678 (12)0.0509 (5)
H460.09010.24690.15850.061*
O210.29993 (15)0.8641 (4)0.20268 (11)0.0833 (6)
O220.3440 (2)1.0653 (4)0.30178 (14)0.1070 (8)
N210.30274 (16)0.9127 (3)0.27141 (13)0.0665 (5)
C210.25695 (16)0.7792 (4)0.31921 (12)0.0538 (5)
C220.21164 (19)0.6059 (4)0.28520 (14)0.0625 (6)
H220.20960.57750.23230.075*
C230.1695 (2)0.4750 (4)0.32914 (14)0.0686 (6)
H230.13800.35820.30600.082*
C240.17371 (18)0.5165 (4)0.40792 (13)0.0644 (6)
O230.13486 (17)0.3904 (4)0.45435 (11)0.0935 (7)
H23A0.09160.31570.42600.140*
C250.2203 (2)0.6886 (5)0.44203 (14)0.0770 (8)
H250.22380.71510.49540.092*
C260.2620 (2)0.8231 (4)0.39763 (15)0.0732 (7)
H260.29290.94080.42040.088*
O311.00715 (17)1.0726 (4)0.28193 (12)0.0961 (7)
O321.01880 (18)1.0385 (4)0.40723 (12)0.0973 (7)
N310.98754 (16)0.9822 (4)0.33756 (12)0.0685 (5)
C310.92836 (16)0.7970 (4)0.32165 (12)0.0544 (5)
C320.88446 (16)0.7437 (4)0.24380 (12)0.0562 (5)
H320.89180.82610.20240.067*
C330.82972 (17)0.5685 (4)0.22744 (12)0.0549 (5)
H330.79980.53220.17480.066*
C340.81888 (17)0.4453 (4)0.28894 (13)0.0585 (5)
O330.76777 (16)0.2709 (3)0.27645 (11)0.0824 (5)
H33A0.73720.26060.22910.124*
C350.8646 (2)0.5020 (5)0.36739 (14)0.0821 (8)
H350.85880.41910.40910.098*
C360.9181 (2)0.6787 (5)0.38391 (14)0.0752 (7)
H360.94690.71770.43640.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0484 (7)0.0692 (10)0.0588 (8)0.0064 (7)0.0106 (6)0.0227 (8)
O20.0432 (7)0.0694 (11)0.0653 (8)0.0176 (7)0.0121 (6)0.0004 (8)
C10.0386 (9)0.0416 (10)0.0515 (10)0.0029 (8)0.0154 (8)0.0011 (8)
C20.0349 (8)0.0410 (10)0.0410 (8)0.0016 (7)0.0108 (7)0.0020 (8)
N10.0333 (7)0.0421 (8)0.0505 (8)0.0011 (6)0.0153 (6)0.0007 (7)
C30.0391 (9)0.0464 (10)0.0521 (10)0.0047 (8)0.0123 (8)0.0044 (9)
C40.0443 (9)0.0396 (10)0.0478 (10)0.0062 (8)0.0104 (7)0.0036 (8)
C50.0635 (12)0.0403 (10)0.0499 (10)0.0009 (10)0.0171 (9)0.0035 (9)
N20.0741 (11)0.0402 (9)0.0593 (10)0.0111 (9)0.0197 (8)0.0020 (8)
C60.0575 (11)0.0447 (10)0.0504 (10)0.0055 (9)0.0123 (8)0.0055 (9)
C70.0746 (14)0.0681 (16)0.0557 (11)0.0048 (13)0.0212 (10)0.0141 (12)
C80.0835 (17)0.110 (2)0.0482 (12)0.0041 (18)0.0105 (12)0.0046 (15)
C90.0823 (16)0.113 (3)0.0483 (12)0.0096 (19)0.0004 (11)0.0162 (16)
C100.0571 (12)0.0776 (17)0.0593 (12)0.0122 (12)0.0037 (10)0.0101 (12)
C110.0442 (9)0.0474 (11)0.0468 (10)0.0056 (8)0.0066 (8)0.0028 (9)
O410.0646 (10)0.0947 (15)0.1429 (18)0.0118 (12)0.0570 (11)0.0057 (15)
O420.0514 (9)0.0956 (16)0.1276 (16)0.0020 (11)0.0014 (10)0.0095 (15)
N410.0489 (10)0.0436 (10)0.1112 (16)0.0049 (9)0.0228 (11)0.0014 (12)
C410.0410 (9)0.0340 (9)0.0710 (12)0.0021 (8)0.0174 (8)0.0011 (10)
C420.0617 (11)0.0385 (10)0.0663 (12)0.0026 (10)0.0325 (10)0.0004 (10)
C430.0547 (11)0.0464 (11)0.0499 (10)0.0009 (10)0.0119 (8)0.0053 (9)
C440.0424 (9)0.0389 (9)0.0611 (11)0.0006 (9)0.0147 (8)0.0073 (9)
O430.0413 (7)0.0937 (13)0.0752 (10)0.0014 (9)0.0149 (6)0.0230 (11)
C450.0536 (10)0.0420 (10)0.0525 (10)0.0043 (9)0.0213 (8)0.0042 (9)
C460.0529 (10)0.0405 (10)0.0558 (10)0.0044 (10)0.0070 (8)0.0020 (9)
O210.0852 (12)0.0988 (16)0.0757 (11)0.0139 (11)0.0384 (9)0.0120 (11)
O220.1260 (18)0.0763 (15)0.1163 (16)0.0442 (14)0.0257 (13)0.0043 (13)
N210.0608 (11)0.0620 (13)0.0786 (14)0.0089 (10)0.0208 (10)0.0087 (11)
C210.0505 (10)0.0533 (12)0.0603 (11)0.0003 (10)0.0189 (9)0.0036 (11)
C220.0698 (14)0.0650 (14)0.0554 (11)0.0094 (12)0.0208 (10)0.0022 (11)
C230.0774 (15)0.0668 (15)0.0621 (12)0.0181 (14)0.0188 (11)0.0015 (12)
C240.0637 (13)0.0717 (16)0.0616 (12)0.0033 (13)0.0226 (10)0.0093 (13)
O230.1037 (15)0.1068 (18)0.0754 (11)0.0259 (13)0.0328 (11)0.0195 (12)
C250.0969 (18)0.0840 (19)0.0577 (13)0.0073 (16)0.0337 (13)0.0110 (13)
C260.0859 (17)0.0645 (15)0.0702 (14)0.0093 (14)0.0214 (12)0.0138 (13)
O310.1105 (15)0.0881 (16)0.0887 (13)0.0350 (13)0.0233 (11)0.0127 (12)
O320.1210 (16)0.0899 (16)0.0789 (11)0.0343 (14)0.0210 (11)0.0231 (12)
N310.0688 (12)0.0676 (13)0.0687 (12)0.0046 (11)0.0166 (9)0.0065 (11)
C310.0539 (11)0.0559 (13)0.0555 (11)0.0016 (10)0.0176 (9)0.0041 (10)
C320.0600 (11)0.0571 (13)0.0515 (11)0.0059 (11)0.0141 (9)0.0073 (10)
C330.0567 (12)0.0565 (13)0.0488 (10)0.0055 (11)0.0082 (8)0.0017 (10)
C340.0574 (12)0.0571 (13)0.0605 (12)0.0010 (11)0.0135 (10)0.0004 (11)
O330.0906 (12)0.0718 (12)0.0788 (10)0.0230 (11)0.0102 (9)0.0056 (10)
C350.108 (2)0.086 (2)0.0551 (13)0.0258 (18)0.0252 (13)0.0055 (14)
C360.0945 (18)0.0815 (18)0.0515 (12)0.0182 (16)0.0219 (12)0.0084 (13)
Geometric parameters (Å, º) top
O1—C11.238 (2)C44—O431.343 (2)
O2—C11.263 (2)C44—C451.386 (3)
C1—C21.522 (2)O43—H43A0.8200
C2—N11.491 (2)C45—C461.379 (3)
C2—C31.524 (3)C45—H450.9300
C2—H20.9800C46—H460.9300
N1—H1A0.8900O21—N211.225 (3)
N1—H1B0.8900O22—N211.217 (3)
N1—H1C0.8900N21—C211.448 (3)
C3—C41.492 (3)C21—C221.372 (3)
C3—H3A0.9700C21—C261.375 (3)
C3—H3B0.9700C22—C231.366 (3)
C4—C51.360 (3)C22—H220.9300
C4—C111.438 (3)C23—C241.380 (3)
C5—N21.371 (3)C23—H230.9300
C5—H50.9300C24—O231.351 (3)
N2—C61.367 (3)C24—C251.371 (4)
N2—H2A0.8600O23—H23A0.8200
C6—C71.396 (3)C25—C261.384 (4)
C6—C111.407 (3)C25—H250.9300
C7—C81.374 (4)C26—H260.9300
C7—H70.9300O31—N311.219 (3)
C8—C91.379 (5)O32—N311.232 (3)
C8—H80.9300N31—C311.456 (3)
C9—C101.384 (3)C31—C361.373 (3)
C9—H90.9300C31—C321.373 (3)
C10—C111.393 (3)C32—C331.371 (4)
C10—H100.9300C32—H320.9300
O41—N411.223 (3)C33—C341.384 (3)
O42—N411.217 (3)C33—H330.9300
N41—C411.455 (3)C34—O331.341 (3)
C41—C421.375 (3)C34—C351.393 (3)
C41—C461.379 (3)O33—H33A0.8200
C42—C431.375 (3)C35—C361.373 (4)
C42—H420.9300C35—H350.9300
C43—C441.385 (3)C36—H360.9300
C43—H430.9300
O1—C1—O2125.70 (17)C42—C43—C44120.16 (18)
O1—C1—C2117.88 (15)C42—C43—H43119.9
O2—C1—C2116.40 (16)C44—C43—H43119.9
N1—C2—C1108.38 (14)O43—C44—C43116.81 (17)
N1—C2—C3109.67 (15)O43—C44—C45123.14 (17)
C1—C2—C3111.92 (13)C43—C44—C45120.04 (17)
N1—C2—H2108.9C44—O43—H43A109.5
C1—C2—H2108.9C46—C45—C44120.04 (17)
C3—C2—H2108.9C46—C45—H45120.0
C2—N1—H1A109.5C44—C45—H45120.0
C2—N1—H1B109.5C45—C46—C41118.87 (17)
H1A—N1—H1B109.5C45—C46—H46120.6
C2—N1—H1C109.5C41—C46—H46120.6
H1A—N1—H1C109.5O22—N21—O21123.2 (2)
H1B—N1—H1C109.5O22—N21—C21118.6 (2)
C4—C3—C2113.69 (14)O21—N21—C21118.2 (2)
C4—C3—H3A108.8C22—C21—C26121.1 (2)
C2—C3—H3A108.8C22—C21—N21118.5 (2)
C4—C3—H3B108.8C26—C21—N21120.4 (2)
C2—C3—H3B108.8C23—C22—C21120.0 (2)
H3A—C3—H3B107.7C23—C22—H22120.0
C5—C4—C11106.28 (17)C21—C22—H22120.0
C5—C4—C3127.24 (17)C22—C23—C24119.9 (2)
C11—C4—C3126.45 (18)C22—C23—H23120.1
C4—C5—N2110.37 (17)C24—C23—H23120.1
C4—C5—H5124.8O23—C24—C25117.8 (2)
N2—C5—H5124.8O23—C24—C23122.2 (3)
C6—N2—C5108.74 (17)C25—C24—C23120.0 (2)
C6—N2—H2A125.6C24—O23—H23A109.5
C5—N2—H2A125.6C24—C25—C26120.5 (2)
N2—C6—C7129.6 (2)C24—C25—H25119.8
N2—C6—C11107.86 (16)C26—C25—H25119.8
C7—C6—C11122.5 (2)C21—C26—C25118.6 (2)
C8—C7—C6116.5 (3)C21—C26—H26120.7
C8—C7—H7121.8C25—C26—H26120.7
C6—C7—H7121.8O31—N31—O32122.4 (2)
C7—C8—C9122.1 (2)O31—N31—C31119.0 (2)
C7—C8—H8118.9O32—N31—C31118.6 (2)
C9—C8—H8118.9C36—C31—C32121.4 (2)
C8—C9—C10121.5 (3)C36—C31—N31119.9 (2)
C8—C9—H9119.2C32—C31—N31118.7 (2)
C10—C9—H9119.2C33—C32—C31119.7 (2)
C9—C10—C11118.3 (3)C33—C32—H32120.2
C9—C10—H10120.8C31—C32—H32120.2
C11—C10—H10120.8C32—C33—C34120.3 (2)
C10—C11—C6118.99 (19)C32—C33—H33119.8
C10—C11—C4134.3 (2)C34—C33—H33119.8
C6—C11—C4106.74 (17)O33—C34—C33122.9 (2)
O42—N41—O41122.2 (2)O33—C34—C35118.1 (2)
O42—N41—C41118.7 (2)C33—C34—C35119.0 (2)
O41—N41—C41119.1 (2)C34—O33—H33A109.5
C42—C41—C46121.78 (17)C36—C35—C34120.8 (2)
C42—C41—N41118.93 (19)C36—C35—H35119.6
C46—C41—N41119.28 (19)C34—C35—H35119.6
C43—C42—C41119.08 (18)C35—C36—C31118.9 (2)
C43—C42—H42120.5C35—C36—H36120.6
C41—C42—H42120.5C31—C36—H36120.6
O1—C1—C2—N11.2 (2)C42—C43—C44—O43179.9 (2)
O2—C1—C2—N1177.61 (17)C42—C43—C44—C450.2 (3)
O1—C1—C2—C3122.22 (19)O43—C44—C45—C46178.8 (2)
O2—C1—C2—C356.5 (2)C43—C44—C45—C461.3 (3)
N1—C2—C3—C458.0 (2)C44—C45—C46—C410.8 (3)
C1—C2—C3—C4178.34 (15)C42—C41—C46—C450.8 (3)
C2—C3—C4—C594.3 (2)N41—C41—C46—C45179.85 (19)
C2—C3—C4—C1183.3 (2)O22—N21—C21—C22179.2 (2)
C11—C4—C5—N21.0 (2)O21—N21—C21—C220.7 (3)
C3—C4—C5—N2179.01 (18)O22—N21—C21—C261.2 (4)
C4—C5—N2—C60.5 (2)O21—N21—C21—C26177.3 (2)
C5—N2—C6—C7178.8 (2)C26—C21—C22—C230.8 (4)
C5—N2—C6—C110.3 (2)N21—C21—C22—C23178.8 (2)
N2—C6—C7—C8178.4 (2)C21—C22—C23—C240.7 (4)
C11—C6—C7—C80.1 (3)C22—C23—C24—O23178.8 (3)
C6—C7—C8—C90.4 (4)C22—C23—C24—C250.1 (4)
C7—C8—C9—C100.1 (5)O23—C24—C25—C26179.7 (3)
C8—C9—C10—C110.7 (4)C23—C24—C25—C260.9 (4)
C9—C10—C11—C61.2 (3)C22—C21—C26—C250.1 (4)
C9—C10—C11—C4179.4 (2)N21—C21—C26—C25178.0 (2)
N2—C6—C11—C10179.5 (2)C24—C25—C26—C210.8 (4)
C7—C6—C11—C100.9 (3)O31—N31—C31—C36170.9 (3)
N2—C6—C11—C40.9 (2)O32—N31—C31—C366.9 (3)
C7—C6—C11—C4179.5 (2)O31—N31—C31—C328.5 (3)
C5—C4—C11—C10179.3 (2)O32—N31—C31—C32173.7 (2)
C3—C4—C11—C101.3 (4)C36—C31—C32—C330.4 (3)
C5—C4—C11—C61.2 (2)N31—C31—C32—C33179.0 (2)
C3—C4—C11—C6179.19 (18)C31—C32—C33—C340.2 (3)
O42—N41—C41—C42174.3 (2)C32—C33—C34—O33178.9 (2)
O41—N41—C41—C426.6 (3)C32—C33—C34—C350.2 (3)
O42—N41—C41—C466.7 (3)O33—C34—C35—C36179.9 (3)
O41—N41—C41—C46172.5 (2)C33—C34—C35—C361.1 (4)
C46—C41—C42—C431.9 (3)C34—C35—C36—C311.7 (5)
N41—C41—C42—C43179.0 (2)C32—C31—C36—C351.3 (4)
C41—C42—C43—C441.4 (3)N31—C31—C36—C35178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O210.892.102.970 (2)165
N1—H1C···O1i0.891.862.743 (2)172
O43—H43A···O2ii0.821.812.623 (2)171
O23—H23A···O32ii0.822.082.820 (3)150
O33—H33A···O2iii0.821.882.687 (2)170
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H12N2O2·3C6H5NO3
Mr621.56
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)13.0321 (9), 6.7332 (4), 17.3091 (10)
β (°) 104.479 (3)
V3)1470.59 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.15
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.915, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
94463, 4289, 2984
Rint0.031
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.04
No. of reflections4289
No. of parameters410
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O210.892.102.970 (2)164.9
N1—H1C···O1i0.891.862.743 (2)171.6
O43—H43A···O2ii0.821.812.623 (2)171.1
O23—H23A···O32ii0.822.082.820 (3)149.5
O33—H33A···O2iii0.821.882.687 (2)170.1
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y1, z; (iii) x, y1, z.
Geometric parameters of short ring-interactions with centroid to centroid distances less than 6.0Å. top
CgCg(Å)α(°)
Cg1···Cg44.7810 (14)12.02 (12)
Cg1···Cg54.6231 (14)14.12 (12)
Cg2···Cg44.3316 (15)11.22 (13)
Cg2···Cg4i5.9401 (15)65.16 (13)
Cg2···Cg54.6336 (14)14.58 (12)
Cg4···Cg5ii4.3160 (14)17.89 (12)
Cg5···Cg6iii5.8571 (13)61.42 (11)
Cg6···Cg6iv3.5724 (12)4.92 (2)
Notes: α is the dihedral angle between interacting planes; Cg1 is the centroid of the pyrrole ring; Cg2 is the centroid of the benzene indole ring; Cg4 is the centroid of C21 to C26 π-ring; Cg5 is the centroid of C31 to C36 π-ring; Cg6 is the centroid of C41 to C46 π-ring.

Symmetry codes: (i) 1-x,-1/2+y,1-z; (ii) -1+x,y,z; (iii) 1+x,y,z; (iv) -x,1/2+y,-z
Geometric parameters of N-O···Cg(π-ring) interactions with O..Cg less than 4.0Å. top
O···Cg(Å)N–O···Cg(°)N···Cg(Å)
N21–O21···Cg13.262 (2)96.65 (15)3.615 (2)
N21–O22···Cg23.821 (3)74.05 (16)3.678 (2)
N31–O31···Cg4iii3.954 (2)67.54 (15)3.665 (2)
Notes: The centroids and symmetry codes are as in table A.
 

Acknowledgements

This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competitividade) programme and by the Fundação para a Ciência e a Tecnologia (project PEst-C/FIS/UI0036/2011).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBakke, O. & Mostad, A. (1980). Acta Chem. Scand. Ser. B, 34, 559–570.  CrossRef Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBye, E., Mostad, A. & Romming, C. (1973). Acta Chem. Scand. 27, 471–484.  CrossRef CAS Web of Science Google Scholar
First citationChemla, D. S. & Zyss, J. (1987). Editors. Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1. New York: Academic Press.  Google Scholar
First citationKurtz, S. K. & Perry, T. T. J. (1968). J. Appl. Phys. 19, 3768–3813.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZyss, J. & Ledoux, I. (1994). Chem. Rev. 94, 77–105.  CrossRef CAS Web of Science Google Scholar
First citationZyss, J. & Nicoud, J. F. (1996). Curr. Opin. Solid State Mater. Sci. 1, 533–546.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds