organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{4-[(Pyridin-2-yl)methyl­­idene­amino]­phen­yl}acetic acid

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 28 January 2012; accepted 14 February 2012; online 17 February 2012)

The title mol­ecule, C14H12N2O2, forms a dimeric unit linked by a pair of symmetry-equivalent O—H⋯N hydrogen bonds. The aromatic rings are significantly twisted from each other with a dihedral angle of 44.04 (4)°.

Related literature

For transition-metal or lanthanide coordination polymers containing linking ligands related to the title mol­ecule, see: Han & Lee (2012[Han, S. H. & Lee, S. W. (2012). Polyhedron, 31, 255-264.]); Jang & Lee (2010[Jang, Y. O. & Lee, S. W. (2010). Polyhedron, 29, 2731-2738.]); Li et al. (2011[Li, J., Peng, Y., Liang, H. W., Yu, Y., Xin, B. J., Li, G. H., Shi, Z. & Feng, S. H. (2011). Eur. J. Inorg. Chem. 17, 2712-2719.]); Yun et al. (2009[Yun, S. Y., Lee, K. E. & Lee, S. W. (2009). J. Mol. Struct. 935, 75-81.]); Zhang et al. (2004[Zhang, J., Li, Z. J., Wen, Y. H., Kang, Y., Chen, J. K. & Yao, Y. G. (2004). J. Mol. Struct. 697, 185-189.]). For df metal–organic frameworks based on pyrid­yl–carboxyl­ate-type linking ligands, see: Chen et al. (2011[Chen, Y. M., She, S. X., Zheng, L. N., Hu, B., Chen, W. Q., Xu, B., Chen, Z., Zhou, F. Y. & Li, Y. H. (2011). Polyhedron, 30, 3010-3016.], 2010[Chen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267-3276.]); Tang et al. (2010[Tang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924-928.]); Yue et al. (2011[Yue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396-1399.]); Zhu et al. (2010[Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2

  • Mr = 240.26

  • Monoclinic, P 21 /c

  • a = 4.1558 (1) Å

  • b = 25.7790 (5) Å

  • c = 11.2213 (2) Å

  • β = 96.623 (1)°

  • V = 1194.14 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.980

  • 19023 measured reflections

  • 2999 independent reflections

  • 2113 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.05

  • 2999 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯N1i 0.95 (2) 1.73 (2) 2.6686 (15) 165.9 (18)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2007[Bruker (2007). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers are typically prepared by employing linking ligands possessing various terminal groups, including pyridyl–pyridyl, pyridyl–sulfonate, pyridyl–amine, carboxylate–carboxylate, and pyridyl–carboxylate terminals (Han & Lee, 2012; Jang & Lee, 2010; Li et al., 2011; Yun et al., 2009; Zhang et al., 2004). Almost all known polymers contain either d- or f-block metals. On the other hand, several pyridyl–carboxylate type ligands were recently utilized for the preparation of coordination polymers containing both d- and f-block metals within their frameworks (Chen et al., 2011; Chen et al., 2010; Tang et al., 2010; Yue et al., 2011; Zhu et al., 2010). In our ongoing study of coordination polymers, a new potential linking ligand with the pyridyl–carboxylate terminals was synthesized. We herein report its crystal structure.

The molecular structure of the title molecule with the atom-labeling scheme is given in Figure 1, which clearly shows both the pyridyl and the carboxylate terminals. The π-conjugation system of the entire molecule is interrupted due to the CH2 fragment in the terminal CH2COOH group. Two planar 6-membered rings (2-pyridyl and phenyl rings) are significantly twisted from each other with the dihedral angle of 44.04 (4)°. The torsion angle of C1–C6–N2–C7 is 175.9 (1)°. The N2–C6 bond length [1.265 (2) Å] clearly indicates a C=N double bond. The N1···O1 and N1···O2 separations are 8.457 (1) and 10.249 (2) Å, respectively. As shown in Figure 2, two molecules are connected by the strong intermolecular hydrogen bonds of the O–H···N type (Table 1).

Related literature top

For d or f coordination polymers containing linking ligands related to the title molecule, see: Han & Lee (2012); Jang & Lee (2010); Li et al. (2011); Yun et al. (2009); Zhang et al. (2004). For df metal–organic frameworks based on pyridyl–carboxylate-type linking ligands, see: Chen et al. (2011, 2010); Tang et al. (2010); Yue et al. (2011); Zhu et al. (2010).

Experimental top

At room temperature, 4-(aminophenyl)acetic acid (1.00 g, 6.6 mmol) was dissolved in hot methanol (30 ml), and then 2-pyridinecarboxaldehyde (0.71 g, 6.6 mmol) was added slowly. The mixture was refluxed at 65 °C for 2 h. After being slowly air-cooled, the resulting solution was filtered and concentrated to one-fourth of its original volume with a rotary evaporator, and then allowed to stand for 24 h. The resulting green crystals were separated by filtration, washed with methanol (10 ml × 3), and then vacuum-dried to give the title compound (1.34 g, 5.6 mmol, 85.0% yield). mp: 411–413 K. 1H NMR (500 MHz, CD3SOCD3, δ): 8.70–8.71 (m, 1H, pyridine N–CH), 8.58 (s, 1H, N=CH), 8.14 (d, 1H, aromatic proton), 7.91–7.95 (m, 1H, aromatic proton), 7.49–7.52 (m, 1H, aromatic proton), 7.27–7.33 (m, 4H, aromatic protons), 3.60 (s, 2H, CH2). 13C{1H} NMR (125 MHz, CD3SOCD3, δ): 173.3, 161.1, 154.8, 150.3, 149.6, 137.6, 134.5, 130.9, 126.3, 122.4, 121.9, 40.5. IR (KBr, cm-1): 3057 (w), 2885 (w), 2826 (w), 2109 (w), 2014 (w), 1925(w), 1735 (m), 1635 (s), 1508 (s), 1461 (m), 1385 (w), 1142 (m), 1023 (m), 856 (m), 803 (w), 776 (w), 724 (w), 612 (w).

Refinement top

All non-hydrogen atoms were refined anisotropically. C-bound H atoms were positioned geometrically [C—H = 0.93–0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Atom HO1 was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2007); software used to prepare material for publication: SHELXTL (Bruker, 2007.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A dimeric unit formed by the O–H···N hydrogen bonds. Suffix A in atom labels indicates the symmetry operation –x+1, –y+1, –z+1.
(E)-2-{4-[(Pyridin-2-yl)methylideneamino]phenyl}acetic acid top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6688 reflections
a = 4.1558 (1) Åθ = 2.4–27.7°
b = 25.7790 (5) ŵ = 0.09 mm1
c = 11.2213 (2) ÅT = 296 K
β = 96.623 (1)°Block, green
V = 1194.14 (4) Å30.32 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2999 independent reflections
Radiation source: sealed tube2113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.971, Tmax = 0.980k = 3434
19023 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.0884P]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12N2O2V = 1194.14 (4) Å3
Mr = 240.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1558 (1) ŵ = 0.09 mm1
b = 25.7790 (5) ÅT = 296 K
c = 11.2213 (2) Å0.32 × 0.28 × 0.22 mm
β = 96.623 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2113 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.048
19023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2999 reflectionsΔρmin = 0.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0141 (3)0.59412 (4)0.29429 (8)0.0559 (3)
O20.1260 (4)0.62479 (4)0.11244 (10)0.0854 (4)
N10.6832 (3)0.31705 (4)0.64271 (10)0.0498 (3)
N20.2167 (3)0.35524 (4)0.37215 (9)0.0468 (3)
C10.5054 (3)0.30923 (5)0.53680 (11)0.0433 (3)
C20.4438 (4)0.25998 (5)0.49147 (14)0.0582 (4)
H20.32470.25540.41680.070*
C30.5605 (4)0.21775 (6)0.55782 (16)0.0686 (5)
H30.52190.18430.52850.082*
C40.7336 (4)0.22551 (6)0.66725 (15)0.0671 (5)
H40.81040.19750.71460.081*
C50.7917 (4)0.27542 (6)0.70586 (13)0.0626 (4)
H50.91300.28060.77990.075*
C60.3776 (3)0.35647 (5)0.47493 (11)0.0439 (3)
H60.41650.38840.51260.053*
C70.0845 (3)0.40250 (4)0.32274 (11)0.0405 (3)
C80.0533 (3)0.43940 (5)0.39151 (11)0.0452 (3)
H80.05410.43410.47350.054*
C90.1887 (3)0.48373 (5)0.33884 (12)0.0457 (3)
H90.28350.50780.38580.055*
C100.1870 (3)0.49330 (4)0.21741 (11)0.0400 (3)
C110.0539 (3)0.45583 (5)0.14942 (11)0.0433 (3)
H110.05180.46120.06760.052*
C120.0758 (3)0.41058 (5)0.20048 (11)0.0449 (3)
H120.15750.38550.15260.054*
C130.3321 (3)0.54233 (5)0.16057 (13)0.0491 (3)
H13A0.36630.53720.07440.059*
H13B0.54320.54740.18770.059*
C140.1385 (3)0.59138 (5)0.18526 (12)0.0448 (3)
HO10.130 (5)0.6261 (9)0.3040 (17)0.097 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0796 (7)0.0436 (5)0.0408 (5)0.0069 (5)0.0092 (5)0.0010 (4)
O20.1241 (11)0.0643 (7)0.0594 (7)0.0192 (7)0.0258 (7)0.0201 (6)
N10.0604 (7)0.0424 (6)0.0431 (6)0.0003 (5)0.0083 (5)0.0016 (5)
N20.0582 (7)0.0396 (5)0.0403 (6)0.0062 (5)0.0044 (5)0.0031 (4)
C10.0491 (7)0.0402 (6)0.0393 (7)0.0050 (5)0.0005 (5)0.0026 (5)
C20.0734 (10)0.0433 (7)0.0538 (8)0.0101 (7)0.0099 (7)0.0004 (6)
C30.0904 (12)0.0375 (7)0.0746 (11)0.0061 (7)0.0038 (9)0.0005 (7)
C40.0863 (12)0.0442 (8)0.0675 (10)0.0086 (7)0.0052 (9)0.0131 (7)
C50.0787 (11)0.0537 (8)0.0504 (8)0.0069 (7)0.0145 (7)0.0065 (6)
C60.0516 (7)0.0380 (6)0.0403 (7)0.0073 (5)0.0021 (6)0.0010 (5)
C70.0477 (7)0.0348 (6)0.0370 (6)0.0092 (5)0.0043 (5)0.0006 (5)
C80.0561 (8)0.0460 (7)0.0329 (6)0.0099 (6)0.0021 (5)0.0003 (5)
C90.0499 (7)0.0447 (7)0.0426 (7)0.0035 (6)0.0048 (6)0.0069 (5)
C100.0373 (6)0.0386 (6)0.0420 (7)0.0052 (5)0.0044 (5)0.0010 (5)
C110.0525 (7)0.0438 (7)0.0322 (6)0.0034 (5)0.0006 (5)0.0014 (5)
C120.0569 (8)0.0392 (6)0.0378 (7)0.0013 (5)0.0011 (6)0.0032 (5)
C130.0442 (7)0.0492 (7)0.0505 (8)0.0048 (6)0.0090 (6)0.0010 (6)
C140.0495 (7)0.0413 (7)0.0420 (7)0.0104 (5)0.0021 (6)0.0019 (5)
Geometric parameters (Å, º) top
O1—C141.3135 (15)C6—H60.9300
O1—HO10.95 (2)C7—C121.3840 (17)
O2—C141.1925 (15)C7—C81.3895 (18)
N1—C51.3353 (16)C8—C91.3766 (17)
N1—C11.3404 (16)C8—H80.9300
N2—C61.2651 (15)C9—C101.3856 (18)
N2—C71.4222 (15)C9—H90.9300
C1—C21.3806 (17)C10—C111.3852 (18)
C1—C61.4703 (16)C10—C131.5097 (17)
C2—C31.375 (2)C11—C121.3813 (17)
C2—H20.9300C11—H110.9300
C3—C41.364 (2)C12—H120.9300
C3—H30.9300C13—C141.5070 (19)
C4—C51.370 (2)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—H50.9300
C14—O1—HO1109.6 (12)C9—C8—C7120.28 (11)
C5—N1—C1117.88 (11)C9—C8—H8119.9
C6—N2—C7118.28 (10)C7—C8—H8119.9
N1—C1—C2121.65 (11)C8—C9—C10121.46 (12)
N1—C1—C6115.24 (10)C8—C9—H9119.3
C2—C1—C6123.11 (11)C10—C9—H9119.3
C3—C2—C1119.33 (13)C11—C10—C9117.72 (11)
C3—C2—H2120.3C11—C10—C13121.11 (11)
C1—C2—H2120.3C9—C10—C13121.16 (12)
C4—C3—C2119.17 (13)C12—C11—C10121.46 (11)
C4—C3—H3120.4C12—C11—H11119.3
C2—C3—H3120.4C10—C11—H11119.3
C3—C4—C5118.54 (13)C11—C12—C7120.18 (12)
C3—C4—H4120.7C11—C12—H12119.9
C5—C4—H4120.7C7—C12—H12119.9
N1—C5—C4123.39 (14)C14—C13—C10116.48 (10)
N1—C5—H5118.3C14—C13—H13A108.2
C4—C5—H5118.3C10—C13—H13A108.2
N2—C6—C1122.27 (11)C14—C13—H13B108.2
N2—C6—H6118.9C10—C13—H13B108.2
C1—C6—H6118.9H13A—C13—H13B107.3
C12—C7—C8118.82 (11)O2—C14—O1123.01 (13)
C12—C7—N2118.70 (11)O2—C14—C13123.00 (12)
C8—C7—N2122.37 (11)O1—C14—C13113.99 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N1i0.95 (2)1.73 (2)2.6686 (15)165.9 (18)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.1558 (1), 25.7790 (5), 11.2213 (2)
β (°) 96.623 (1)
V3)1194.14 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19023, 2999, 2113
Rint0.048
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.05
No. of reflections2999
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2007), SHELXTL (Bruker, 2007.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N1i0.95 (2)1.73 (2)2.6686 (15)165.9 (18)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2009–0079916).

References

First citationBruker (2007). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. M., She, S. X., Zheng, L. N., Hu, B., Chen, W. Q., Xu, B., Chen, Z., Zhou, F. Y. & Li, Y. H. (2011). Polyhedron, 30, 3010–3016.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267–3276.  Web of Science CSD CrossRef Google Scholar
First citationHan, S. H. & Lee, S. W. (2012). Polyhedron, 31, 255–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationJang, Y. O. & Lee, S. W. (2010). Polyhedron, 29, 2731–2738.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Peng, Y., Liang, H. W., Yu, Y., Xin, B. J., Li, G. H., Shi, Z. & Feng, S. H. (2011). Eur. J. Inorg. Chem. 17, 2712–2719.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924–928.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationYun, S. Y., Lee, K. E. & Lee, S. W. (2009). J. Mol. Struct. 935, 75–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Li, Z. J., Wen, Y. H., Kang, Y., Chen, J. K. & Yao, Y. G. (2004). J. Mol. Struct. 697, 185–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds