organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-(2-Chloro­benzyl­­idene)amino 2-amino-4-chloro­benzoate

aHubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: yinweiyan_2004@163.com

(Received 29 December 2011; accepted 29 January 2012; online 17 February 2012)

In the title compound, C14H10Cl2N2O2, the configuration about the C=N double bond is E and the dihedral angle between the benzene rings is 1.75 (5)°. An intra­molecular N—H⋯O inter­action generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, resulting in [101] chains.

Related literature

For background to 2-amino-4-chloro­benzoic acid derivatives, see: Jahnke et al. (2010[Jahnke, W., Grotzfeld, R. M., Pelle, X., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Cotesta, S., Fabbro, D., Furet, P., Mestan, D. & Marzinzik, A. L. (2010). J. Am. Chem. Soc. 132, 7043-7048.]); Lee et al. (2005[Lee, J., Chubb, A. J., Moman, E., McLoughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678-3685.]). For a related structure, see: Seong et al. (2008[Seong, C. M., Park, W. K., Park, C. M., Kong, J. Y. & Park, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 738-743.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O2

  • Mr = 309.14

  • Monoclinic, P 21 /n

  • a = 7.4034 (5) Å

  • b = 23.8190 (15) Å

  • c = 7.6362 (5) Å

  • β = 96.382 (1)°

  • V = 1338.23 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.953

  • 12076 measured reflections

  • 3879 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.084

  • S = 1.05

  • 3879 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.88 2.02 2.6653 (12) 130
N2—H2A⋯O2i 0.88 2.19 2.9332 (12) 142
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Amino-4-chlorobenzoic acid derivatives show diverse biological properties such as inhibitor of the prostaglandin H2 synthase peroxidase activity (Lee et al., 2005) and allosteric inhibitors of Bcr-Abl (Jahnke et al., 2010). As a part of our studies of 2-aminobenzoic acid-containing compounds with potential biological activities, we report here the crystal structure of the title compound, (I) (Fig. 1).

The conformation of the N—H and the C=O bonds in the 2-aminobenzoic acid segment is similar to that observed in other 2-aminobenzoic acid compound (Seong et al., 2008). The dihedral angles between the two phenyl rings is 1.75 (5)°. The molecular structure is linked by N—H···O hydrogen-bonds (Table 1).

Related literature top

For background to 2-amino-4-chlorobenzoic acid derivatives, see: Jahnke et al. (2010); Lee et al. (2005). For a related structure, see: Seong et al. (2008).

Experimental top

Dicyclohexylcarbodiimide (1.1 g, 5.0 mmol) and 4-dimethylamiopryidine(0.25 g, 1.0 mmol) was added to a mixture of 2-chlorobenzaldehyde oxime (0.78 g, 5.0 mmol) and 2-amino-4-chlorobenzoic acid (0.86 g, 5.0 mmol) in dichloromethane (30 ml). The reaction mixture was stirred for 14 h at 353 k. The product was collected by filtration give a gray solid and recrystallization from its ether solution yielded colourless prisms of (I) after a few days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97Å and N—H = 0.86 Å), and refined as riding with Uiso (H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
(E)-(2-Chlorobenzylidene)amino 2-amino-4-chlorobenzoate top
Crystal data top
C14H10Cl2N2O2F(000) = 632
Mr = 309.14Dx = 1.534 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4034 (5) ÅCell parameters from 9848 reflections
b = 23.8190 (15) Åθ = 2.8–32.0°
c = 7.6362 (5) ŵ = 0.49 mm1
β = 96.382 (1)°T = 100 K
V = 1338.23 (15) Å3Block, colorless
Z = 40.16 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3879 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.926, Tmax = 0.953k = 3332
12076 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5103P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3879 reflectionsΔρmax = 0.53 e Å3
182 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (10)
Crystal data top
C14H10Cl2N2O2V = 1338.23 (15) Å3
Mr = 309.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4034 (5) ŵ = 0.49 mm1
b = 23.8190 (15) ÅT = 100 K
c = 7.6362 (5) Å0.16 × 0.15 × 0.10 mm
β = 96.382 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3879 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3637 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.953Rint = 0.015
12076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
3879 reflectionsΔρmin = 0.53 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45478 (14)0.08217 (4)0.17648 (13)0.01523 (18)
C20.36816 (14)0.09752 (5)0.01219 (13)0.01805 (19)
H20.31330.06980.06590.022*
C30.36279 (15)0.15379 (5)0.03640 (14)0.0197 (2)
H30.30430.16460.14830.024*
C40.44295 (15)0.19433 (5)0.07849 (14)0.0190 (2)
H40.43830.23280.04530.023*
C50.52956 (14)0.17850 (4)0.24135 (13)0.01681 (19)
H50.58540.20630.31840.020*
C60.53611 (13)0.12204 (4)0.29440 (13)0.01445 (18)
C70.62742 (13)0.10574 (4)0.46828 (13)0.01528 (18)
H70.66600.06820.49180.018*
C90.80555 (13)0.16068 (4)0.86039 (13)0.01431 (18)
C100.89159 (13)0.13801 (4)1.02756 (13)0.01340 (17)
C110.97488 (13)0.17569 (4)1.15683 (13)0.01466 (18)
C121.05960 (14)0.15271 (4)1.31596 (13)0.01651 (19)
H121.11760.17671.40440.020*
C131.05789 (14)0.09568 (4)1.34250 (13)0.01679 (19)
C140.97615 (14)0.05787 (4)1.21752 (14)0.01768 (19)
H140.97720.01861.23940.021*
C150.89387 (13)0.07991 (4)1.06104 (13)0.01523 (18)
H150.83740.05520.97390.018*
Cl10.45712 (4)0.011502 (10)0.23325 (3)0.01985 (8)
Cl21.16302 (4)0.069412 (12)1.54105 (3)0.02424 (8)
N10.65290 (13)0.14358 (4)0.58580 (12)0.01819 (18)
N20.97461 (13)0.23234 (4)1.13648 (13)0.02025 (19)
H2A1.02640.25391.22130.024*
H2B0.92260.24751.03850.024*
O10.74622 (10)0.11954 (3)0.74289 (10)0.01663 (15)
O20.78875 (12)0.21027 (3)0.82487 (11)0.02169 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0162 (4)0.0151 (4)0.0144 (4)0.0010 (3)0.0017 (3)0.0007 (3)
C20.0188 (4)0.0214 (5)0.0136 (4)0.0015 (4)0.0002 (3)0.0026 (3)
C30.0209 (5)0.0236 (5)0.0145 (4)0.0046 (4)0.0011 (4)0.0016 (4)
C40.0220 (5)0.0179 (4)0.0173 (4)0.0025 (4)0.0034 (4)0.0030 (4)
C50.0192 (4)0.0158 (4)0.0156 (4)0.0005 (3)0.0027 (3)0.0001 (3)
C60.0147 (4)0.0159 (4)0.0127 (4)0.0010 (3)0.0018 (3)0.0001 (3)
C70.0158 (4)0.0157 (4)0.0140 (4)0.0002 (3)0.0002 (3)0.0006 (3)
C90.0131 (4)0.0141 (4)0.0151 (4)0.0011 (3)0.0016 (3)0.0003 (3)
C100.0129 (4)0.0133 (4)0.0134 (4)0.0004 (3)0.0014 (3)0.0004 (3)
C110.0134 (4)0.0142 (4)0.0160 (4)0.0009 (3)0.0001 (3)0.0010 (3)
C120.0155 (4)0.0195 (5)0.0139 (4)0.0010 (3)0.0008 (3)0.0010 (3)
C130.0150 (4)0.0217 (5)0.0133 (4)0.0003 (3)0.0002 (3)0.0041 (3)
C140.0181 (4)0.0157 (4)0.0187 (5)0.0008 (3)0.0003 (4)0.0040 (3)
C150.0152 (4)0.0134 (4)0.0166 (4)0.0012 (3)0.0005 (3)0.0009 (3)
Cl10.02618 (14)0.01429 (12)0.01833 (13)0.00055 (8)0.00089 (9)0.00137 (8)
Cl20.02529 (14)0.03026 (15)0.01581 (13)0.00042 (10)0.00378 (10)0.00817 (9)
N10.0215 (4)0.0180 (4)0.0137 (4)0.0028 (3)0.0036 (3)0.0012 (3)
N20.0244 (4)0.0134 (4)0.0210 (4)0.0021 (3)0.0062 (3)0.0016 (3)
O10.0210 (4)0.0146 (3)0.0130 (3)0.0009 (3)0.0041 (3)0.0002 (2)
O20.0264 (4)0.0138 (3)0.0223 (4)0.0026 (3)0.0090 (3)0.0035 (3)
Geometric parameters (Å, º) top
C1—C21.3928 (14)C9—C101.4649 (13)
C1—C61.3980 (14)C10—C151.4071 (13)
C1—Cl11.7378 (10)C10—C111.4230 (13)
C2—C31.3902 (15)C11—N21.3581 (13)
C2—H20.9500C11—C121.4143 (14)
C3—C41.3923 (15)C12—C131.3736 (14)
C3—H30.9500C12—H120.9500
C4—C51.3866 (14)C13—C141.3999 (15)
C4—H40.9500C13—Cl21.7417 (10)
C5—C61.4039 (14)C14—C151.3829 (14)
C5—H50.9500C14—H140.9500
C6—C71.4735 (14)C15—H150.9500
C7—N11.2712 (13)N1—O11.4352 (11)
C7—H70.9500N2—H2A0.8800
C9—O21.2151 (12)N2—H2B0.8800
C9—O11.3677 (12)
C2—C1—C6121.62 (9)C15—C10—C11119.92 (9)
C2—C1—Cl1118.01 (8)C15—C10—C9121.07 (9)
C6—C1—Cl1120.37 (8)C11—C10—C9119.01 (9)
C3—C2—C1119.34 (10)N2—C11—C12118.53 (9)
C3—C2—H2120.3N2—C11—C10123.52 (9)
C1—C2—H2120.3C12—C11—C10117.94 (9)
C2—C3—C4120.20 (10)C13—C12—C11119.94 (9)
C2—C3—H3119.9C13—C12—H12120.0
C4—C3—H3119.9C11—C12—H12120.0
C5—C4—C3119.92 (10)C12—C13—C14123.09 (9)
C5—C4—H4120.0C12—C13—Cl2118.24 (8)
C3—C4—H4120.0C14—C13—Cl2118.67 (8)
C4—C5—C6121.13 (10)C15—C14—C13117.41 (9)
C4—C5—H5119.4C15—C14—H14121.3
C6—C5—H5119.4C13—C14—H14121.3
C1—C6—C5117.79 (9)C14—C15—C10121.70 (9)
C1—C6—C7121.54 (9)C14—C15—H15119.1
C5—C6—C7120.67 (9)C10—C15—H15119.1
N1—C7—C6117.81 (9)C7—N1—O1109.09 (8)
N1—C7—H7121.1C11—N2—H2A120.0
C6—C7—H7121.1C11—N2—H2B120.0
O2—C9—O1122.17 (9)H2A—N2—H2B120.0
O2—C9—C10125.21 (9)C9—O1—N1110.62 (7)
O1—C9—C10112.61 (8)
C6—C1—C2—C30.25 (16)C15—C10—C11—N2178.31 (10)
Cl1—C1—C2—C3179.50 (8)C9—C10—C11—N22.12 (15)
C1—C2—C3—C40.16 (16)C15—C10—C11—C120.59 (14)
C2—C3—C4—C50.48 (16)C9—C10—C11—C12178.99 (9)
C3—C4—C5—C60.89 (16)N2—C11—C12—C13178.24 (10)
C2—C1—C6—C50.63 (15)C10—C11—C12—C130.71 (15)
Cl1—C1—C6—C5179.86 (8)C11—C12—C13—C140.47 (16)
C2—C1—C6—C7179.90 (9)C11—C12—C13—Cl2179.67 (8)
Cl1—C1—C6—C70.66 (14)C12—C13—C14—C150.08 (16)
C4—C5—C6—C10.95 (15)Cl2—C13—C14—C15179.94 (8)
C4—C5—C6—C7179.57 (9)C13—C14—C15—C100.04 (15)
C1—C6—C7—N1160.77 (10)C11—C10—C15—C140.22 (15)
C5—C6—C7—N119.77 (14)C9—C10—C15—C14179.35 (9)
O2—C9—C10—C15175.68 (10)C6—C7—N1—O1178.86 (8)
O1—C9—C10—C155.26 (14)O2—C9—O1—N14.58 (14)
O2—C9—C10—C114.74 (16)C10—C9—O1—N1176.34 (8)
O1—C9—C10—C11174.31 (9)C7—N1—O1—C9168.81 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.882.022.6653 (12)130
N2—H2A···O2i0.882.192.9332 (12)142
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O2
Mr309.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.4034 (5), 23.8190 (15), 7.6362 (5)
β (°) 96.382 (1)
V3)1338.23 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.16 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.926, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
12076, 3879, 3637
Rint0.015
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.084, 1.05
No. of reflections3879
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.882.022.6653 (12)130
N2—H2A···O2i0.882.192.9332 (12)142
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the Foundation of Hubei Agricultural Scientific and Technological Innovation.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJahnke, W., Grotzfeld, R. M., Pelle, X., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Cotesta, S., Fabbro, D., Furet, P., Mestan, D. & Marzinzik, A. L. (2010). J. Am. Chem. Soc. 132, 7043–7048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, J., Chubb, A. J., Moman, E., McLoughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678–3685.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeong, C. M., Park, W. K., Park, C. M., Kong, J. Y. & Park, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 738–743.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds