organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-[1,2-Phenyl­enebis(methyl­ene)]bis­­(1-ethyl­benzimidazolium) dibromide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 January 2012; accepted 23 January 2012; online 4 February 2012)

In the title mol­ecular salt, C26H28N42+·2Br, the central benzene ring makes dihedral angles of 76.75 (11) and 82.40 (10)° with the pendant benzimidazole rings. The corresponding angle between the benzimidazole rings is 57.03 (9)°. In the crystal, the cations and anions are linked via C—H⋯Br hydrogen bonds, forming sheets lying parallel to the bc plane. The crystal structure also features weak C—H⋯π inter­actions.

Related literature

For background to the biological activities of benzimidazole compounds, see: Mohan et al. (2011[Mohan, V. G., Sreenivasulu, N., Rao, A. S. & Chigiri, S. (2011). Der Pharma Chem. 3, 446-452.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28N42+·2Br

  • Mr = 556.34

  • Monoclinic, C c

  • a = 9.7093 (7) Å

  • b = 35.796 (3) Å

  • c = 8.0340 (6) Å

  • β = 118.230 (1)°

  • V = 2460.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 296 K

  • 0.45 × 0.32 × 0.23 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.318, Tmax = 0.516

  • 16606 measured reflections

  • 8158 independent reflections

  • 6244 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.02

  • 8158 reflections

  • 291 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3727 Friedel pairs

  • Flack parameter: 0.009 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Br2 0.93 2.76 3.610 (2) 152
C10—H10A⋯Br1i 0.97 2.92 3.884 (2) 171
C10—H10B⋯Br2 0.97 2.91 3.820 (2) 156
C15—H15A⋯Br2ii 0.93 2.80 3.700 (3) 163
C17—H17B⋯Br2 0.97 2.78 3.696 (3) 158
C24—H24A⋯Br1 0.93 2.73 3.579 (2) 152
C5—H5ACg4iii 0.93 2.92 3.630 (3) 135
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many benzimidazole containing compounds are biologically active (Mohan et al., 2011). As part of our studies in this area, we now describe the title compound, (I).

The central benzene ring (C11–C16) makes dihedral angles of 76.75 (11) and 82.40 (10)° with the adjacent benzimidazole rings (N1,N2/C3–C9) and (N3,N4/C18–C24). The dihedral angle between the benzimidazole rings (N1,N2/C3–C9) and (N1,N2/C3–C9) is 57.03 (9)°. The benzimidazole (N1,N2/C3–C9) and (N3,N4/C18–C24) rings are approximately planar [maximum deviations of 0.020 (3) Å for atom C3 and 0.014 (2) Å for atom N3, respectively].

In the crystal (Fig. 2), the cations and anions are linked via C—H···Br (Table 1) hydrogen bonds, forming two-dimensional networks lying parallel to the the bc-plane. The crystal structure also features weak C—H···π interactions involving the centroid of the phenyl (C11–C16) ring.

Related literature top

For background to the biological activities of benzimidazole compounds, see: Mohan et al. (2011).

Experimental top

A mixture of benzimidazole (2.36 g, 20 mmol) and finely ground potassium hydroxide (2.36 g, 30 mmol) in 30 ml of DMSO was stirred at room temperature (27–28 °C) for 30 min. 1-Bromoethane (1.50 ml, 20 mmol) was added drop wise in this consistently stirring mixture and further stirred for 2 h at same temperature, poured into water (300 ml) and was extracted by chloroform (5 × 20 ml). The extract was dried by magnesium sulphate and evaporated under reduced pressure to get N-ethylbenzimidazole as a thick yellowish fluid (2.52 g, 86.30%). Furthermore, a mixture of 1 (1.46 g, 10 mmol) and 1,2-bis(bromomethyl)benzene (1.32 g, 5 mmol) in dioxane (30 ml) was refluxed at 110 °C for 18 h. Desired compound (2.2Br) appeared as beige–colored precipitates in dark brown solution. The mixture was filtered and precipitates were washed by fresh dioxane (3 × 5 ml), dried at room temperature for 24 h, and soft lumps so obtained were ground to fine powder (2.40 g, 86.33%). Saturated solution of 2.2Br in methanol (0.5 ml) was exposed to diethyl ether vapours (vapour diffusion) at room temperature overnight to get colourless blocks of (I).

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. 3727 Friedel pairs were used to determine the absolute structure. One outliner, (4 0 -4), was omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound.
3,3'-[1,2-Phenylenebis(methylene)]bis(1-ethylbenzimidazolium) dibromide top
Crystal data top
C26H28N42+·2BrF(000) = 1128
Mr = 556.34Dx = 1.502 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5440 reflections
a = 9.7093 (7) Åθ = 2.9–27.3°
b = 35.796 (3) ŵ = 3.32 mm1
c = 8.0340 (6) ÅT = 296 K
β = 118.230 (1)°Block, colourless
V = 2460.1 (3) Å30.45 × 0.32 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
8158 independent reflections
Radiation source: fine-focus sealed tube6244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.318, Tmax = 0.516k = 5442
16606 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.P)2 + 0.1437P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
8158 reflectionsΔρmax = 0.71 e Å3
291 parametersΔρmin = 0.28 e Å3
2 restraintsAbsolute structure: Flack (1983), 3727 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (6)
Crystal data top
C26H28N42+·2BrV = 2460.1 (3) Å3
Mr = 556.34Z = 4
Monoclinic, CcMo Kα radiation
a = 9.7093 (7) ŵ = 3.32 mm1
b = 35.796 (3) ÅT = 296 K
c = 8.0340 (6) Å0.45 × 0.32 × 0.23 mm
β = 118.230 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
8158 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6244 reflections with I > 2σ(I)
Tmin = 0.318, Tmax = 0.516Rint = 0.023
16606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.71 e Å3
S = 1.02Δρmin = 0.28 e Å3
8158 reflectionsAbsolute structure: Flack (1983), 3727 Friedel pairs
291 parametersAbsolute structure parameter: 0.009 (6)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68944 (3)0.918762 (6)0.48259 (3)0.05182 (7)
Br20.38351 (4)0.822199 (8)0.90664 (4)0.06457 (9)
N10.4060 (2)0.95348 (6)0.8359 (3)0.0441 (4)
N20.2014 (2)0.92236 (5)0.6352 (3)0.0378 (4)
N30.4142 (2)0.82699 (5)0.4234 (3)0.0386 (4)
N40.5754 (2)0.79004 (5)0.3842 (3)0.0416 (4)
C10.6769 (3)0.97225 (8)0.9292 (4)0.0569 (7)
H1A0.77990.97291.03540.085*
H1B0.65090.99640.87060.085*
H1C0.67390.95410.83950.085*
C20.5611 (3)0.96170 (10)0.9949 (4)0.0615 (7)
H2A0.59900.93991.07590.074*
H2B0.55190.98201.06900.074*
C30.3020 (3)0.97982 (6)0.7130 (3)0.0405 (4)
C40.3092 (3)1.01828 (7)0.7066 (4)0.0503 (6)
H4A0.39591.03160.79300.060*
C50.1818 (4)1.03575 (7)0.5662 (5)0.0578 (7)
H5A0.18261.06160.55680.069*
C60.0502 (3)1.01593 (7)0.4361 (4)0.0542 (6)
H6A0.03331.02900.34240.065*
C70.0416 (3)0.97753 (7)0.4438 (4)0.0453 (5)
H7A0.04610.96430.35920.054*
C80.1711 (2)0.95996 (6)0.5847 (3)0.0372 (4)
C90.3416 (3)0.92020 (6)0.7867 (3)0.0433 (5)
H9A0.38780.89810.84940.052*
C100.0966 (2)0.89051 (6)0.5423 (3)0.0388 (4)
H10A0.00350.89520.53780.047*
H10B0.14080.86820.61740.047*
C110.0711 (3)0.88369 (5)0.3442 (3)0.0372 (4)
C120.0774 (3)0.89068 (6)0.1938 (4)0.0485 (5)
H12A0.15600.89940.21870.058*
C130.1095 (3)0.88490 (7)0.0100 (4)0.0537 (6)
H13A0.20820.89030.08860.064*
C140.0046 (4)0.87111 (7)0.0274 (4)0.0537 (6)
H14A0.01730.86700.15180.064*
C150.1523 (3)0.86321 (6)0.1182 (4)0.0478 (5)
H15A0.22890.85380.09120.057*
C160.1865 (3)0.86927 (5)0.3048 (3)0.0368 (4)
C170.3497 (3)0.86073 (6)0.4620 (4)0.0411 (5)
H17A0.41790.88170.47670.049*
H17B0.34610.85760.57980.049*
C180.3557 (3)0.79088 (6)0.4066 (3)0.0406 (5)
C190.2223 (3)0.77759 (8)0.4100 (4)0.0525 (6)
H19A0.15330.79330.42600.063*
C200.1996 (4)0.73945 (9)0.3877 (5)0.0635 (8)
H20A0.11120.72920.38650.076*
C210.3028 (4)0.71617 (7)0.3674 (5)0.0665 (8)
H21A0.28250.69060.35470.080*
C220.4359 (4)0.72922 (7)0.3652 (4)0.0581 (7)
H22A0.50600.71330.35230.070*
C230.4582 (3)0.76776 (6)0.3837 (3)0.0404 (4)
C240.5441 (3)0.82501 (6)0.4069 (3)0.0406 (5)
H24A0.60470.84550.41080.049*
C250.7016 (3)0.77625 (9)0.3487 (5)0.0621 (7)
H25A0.65590.76460.22510.074*
H25B0.76020.75730.44180.074*
C260.8105 (5)0.80600 (13)0.3563 (8)0.0893 (12)
H26A0.87820.79640.30990.134*
H26B0.87200.81420.48450.134*
H26C0.75180.82670.27950.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05117 (12)0.04447 (12)0.05944 (14)0.00068 (11)0.02585 (11)0.00191 (11)
Br20.0914 (2)0.05391 (15)0.06103 (16)0.03112 (14)0.04636 (15)0.01796 (12)
N10.0401 (9)0.0531 (11)0.0364 (9)0.0054 (8)0.0158 (8)0.0004 (8)
N20.0395 (9)0.0323 (8)0.0399 (9)0.0074 (7)0.0174 (8)0.0014 (7)
N30.0384 (9)0.0314 (8)0.0517 (10)0.0024 (7)0.0261 (9)0.0025 (7)
N40.0413 (10)0.0384 (9)0.0485 (10)0.0098 (7)0.0240 (8)0.0037 (8)
C10.0458 (13)0.0531 (14)0.0583 (16)0.0057 (11)0.0136 (13)0.0064 (11)
C20.0454 (13)0.085 (2)0.0391 (13)0.0005 (14)0.0076 (11)0.0018 (12)
C30.0437 (11)0.0399 (10)0.0417 (11)0.0040 (9)0.0234 (9)0.0029 (8)
C40.0533 (13)0.0392 (11)0.0636 (15)0.0033 (10)0.0319 (12)0.0091 (10)
C50.0717 (17)0.0332 (11)0.0821 (19)0.0063 (11)0.0475 (16)0.0009 (11)
C60.0530 (13)0.0404 (12)0.0704 (17)0.0135 (11)0.0301 (13)0.0089 (11)
C70.0398 (11)0.0415 (11)0.0506 (13)0.0100 (9)0.0182 (10)0.0021 (9)
C80.0398 (10)0.0326 (9)0.0416 (11)0.0065 (8)0.0213 (9)0.0005 (8)
C90.0447 (11)0.0423 (11)0.0413 (11)0.0091 (9)0.0192 (10)0.0043 (8)
C100.0378 (10)0.0335 (10)0.0506 (12)0.0034 (8)0.0253 (10)0.0000 (8)
C110.0411 (10)0.0255 (8)0.0473 (11)0.0003 (7)0.0229 (9)0.0004 (7)
C120.0438 (12)0.0378 (11)0.0579 (14)0.0073 (9)0.0191 (11)0.0024 (10)
C130.0534 (14)0.0394 (11)0.0517 (14)0.0041 (11)0.0112 (12)0.0014 (10)
C140.0760 (18)0.0378 (11)0.0438 (13)0.0009 (12)0.0253 (13)0.0006 (9)
C150.0660 (15)0.0352 (10)0.0530 (13)0.0019 (10)0.0370 (12)0.0005 (9)
C160.0444 (11)0.0245 (8)0.0466 (11)0.0015 (8)0.0257 (9)0.0028 (7)
C170.0425 (11)0.0352 (10)0.0523 (13)0.0060 (9)0.0279 (10)0.0028 (9)
C180.0440 (11)0.0339 (10)0.0459 (11)0.0011 (8)0.0229 (10)0.0035 (8)
C190.0524 (14)0.0476 (13)0.0659 (16)0.0074 (11)0.0348 (13)0.0019 (11)
C200.0695 (18)0.0507 (15)0.0742 (18)0.0191 (14)0.0372 (15)0.0068 (13)
C210.088 (2)0.0359 (12)0.0665 (17)0.0097 (14)0.0293 (17)0.0035 (12)
C220.0764 (19)0.0329 (11)0.0570 (15)0.0096 (12)0.0249 (14)0.0031 (10)
C230.0451 (11)0.0337 (9)0.0393 (11)0.0056 (9)0.0174 (9)0.0034 (8)
C240.0373 (10)0.0367 (10)0.0523 (13)0.0014 (8)0.0249 (10)0.0022 (9)
C250.0527 (14)0.0677 (17)0.0768 (19)0.0179 (13)0.0396 (14)0.0038 (14)
C260.065 (2)0.100 (3)0.133 (3)0.0016 (19)0.071 (2)0.011 (3)
Geometric parameters (Å, º) top
N1—C91.316 (3)C10—H10B0.9700
N1—C31.393 (3)C11—C121.397 (3)
N1—C21.472 (3)C11—C161.399 (3)
N2—C91.332 (3)C12—C131.373 (4)
N2—C81.396 (3)C12—H12A0.9300
N2—C101.474 (3)C13—C141.369 (5)
N3—C241.331 (3)C13—H13A0.9300
N3—C181.393 (3)C14—C151.385 (4)
N3—C171.460 (3)C14—H14A0.9300
N4—C241.321 (3)C15—C161.391 (3)
N4—C231.388 (3)C15—H15A0.9300
N4—C251.469 (3)C16—C171.519 (3)
C1—C21.499 (5)C17—H17A0.9700
C1—H1A0.9600C17—H17B0.9700
C1—H1B0.9600C18—C231.372 (3)
C1—H1C0.9600C18—C191.392 (4)
C2—H2A0.9700C19—C201.381 (4)
C2—H2B0.9700C19—H19A0.9300
C3—C41.381 (3)C20—C211.371 (5)
C3—C81.394 (3)C20—H20A0.9300
C4—C51.368 (4)C21—C221.382 (5)
C4—H4A0.9300C21—H21A0.9300
C5—C61.402 (4)C22—C231.393 (3)
C5—H5A0.9300C22—H22A0.9300
C6—C71.380 (4)C24—H24A0.9300
C6—H6A0.9300C25—C261.481 (5)
C7—C81.383 (3)C25—H25A0.9700
C7—H7A0.9300C25—H25B0.9700
C9—H9A0.9300C26—H26A0.9600
C10—C111.510 (3)C26—H26B0.9600
C10—H10A0.9700C26—H26C0.9600
C9—N1—C3108.49 (19)C13—C12—C11121.3 (3)
C9—N1—C2126.0 (2)C13—C12—H12A119.3
C3—N1—C2125.5 (2)C11—C12—H12A119.3
C9—N2—C8107.76 (18)C14—C13—C12119.6 (2)
C9—N2—C10125.46 (17)C14—C13—H13A120.2
C8—N2—C10126.77 (18)C12—C13—H13A120.2
C24—N3—C18107.65 (19)C13—C14—C15120.7 (3)
C24—N3—C17125.96 (19)C13—C14—H14A119.6
C18—N3—C17126.3 (2)C15—C14—H14A119.6
C24—N4—C23107.7 (2)C14—C15—C16120.1 (2)
C24—N4—C25127.8 (2)C14—C15—H15A119.9
C23—N4—C25124.4 (2)C16—C15—H15A119.9
C2—C1—H1A109.5C15—C16—C11119.6 (2)
C2—C1—H1B109.5C15—C16—C17119.2 (2)
H1A—C1—H1B109.5C11—C16—C17121.2 (2)
C2—C1—H1C109.5N3—C17—C16111.95 (19)
H1A—C1—H1C109.5N3—C17—H17A109.2
H1B—C1—H1C109.5C16—C17—H17A109.2
N1—C2—C1112.0 (2)N3—C17—H17B109.2
N1—C2—H2A109.2C16—C17—H17B109.2
C1—C2—H2A109.2H17A—C17—H17B107.9
N1—C2—H2B109.2C23—C18—C19122.5 (2)
C1—C2—H2B109.2C23—C18—N3106.5 (2)
H2A—C2—H2B107.9C19—C18—N3131.0 (2)
C4—C3—N1132.0 (2)C20—C19—C18115.4 (3)
C4—C3—C8121.7 (2)C20—C19—H19A122.3
N1—C3—C8106.29 (19)C18—C19—H19A122.3
C5—C4—C3116.4 (2)C21—C20—C19122.4 (3)
C5—C4—H4A121.8C21—C20—H20A118.8
C3—C4—H4A121.8C19—C20—H20A118.8
C4—C5—C6122.2 (2)C20—C21—C22122.4 (2)
C4—C5—H5A118.9C20—C21—H21A118.8
C6—C5—H5A118.9C22—C21—H21A118.8
C7—C6—C5121.6 (2)C21—C22—C23115.6 (3)
C7—C6—H6A119.2C21—C22—H22A122.2
C5—C6—H6A119.2C23—C22—H22A122.2
C6—C7—C8116.0 (2)C18—C23—N4107.35 (18)
C6—C7—H7A122.0C18—C23—C22121.7 (3)
C8—C7—H7A122.0N4—C23—C22130.9 (2)
C7—C8—C3122.1 (2)N4—C24—N3110.8 (2)
C7—C8—N2131.4 (2)N4—C24—H24A124.6
C3—C8—N2106.51 (18)N3—C24—H24A124.6
N1—C9—N2110.93 (19)N4—C25—C26113.3 (3)
N1—C9—H9A124.5N4—C25—H25A108.9
N2—C9—H9A124.5C26—C25—H25A108.9
N2—C10—C11112.86 (18)N4—C25—H25B108.9
N2—C10—H10A109.0C26—C25—H25B108.9
C11—C10—H10A109.0H25A—C25—H25B107.7
N2—C10—H10B109.0C25—C26—H26A109.5
C11—C10—H10B109.0C25—C26—H26B109.5
H10A—C10—H10B107.8H26A—C26—H26B109.5
C12—C11—C16118.6 (2)C25—C26—H26C109.5
C12—C11—C10118.1 (2)H26A—C26—H26C109.5
C16—C11—C10123.2 (2)H26B—C26—H26C109.5
C9—N1—C2—C1108.0 (3)C14—C15—C16—C17179.4 (2)
C3—N1—C2—C172.7 (3)C12—C11—C16—C151.7 (3)
C9—N1—C3—C4177.2 (3)C10—C11—C16—C15178.9 (2)
C2—N1—C3—C42.3 (4)C12—C11—C16—C17179.5 (2)
C9—N1—C3—C80.8 (3)C10—C11—C16—C172.3 (3)
C2—N1—C3—C8179.8 (2)C24—N3—C17—C16119.9 (3)
N1—C3—C4—C5178.5 (3)C18—N3—C17—C1663.6 (3)
C8—C3—C4—C50.8 (4)C15—C16—C17—N338.6 (3)
C3—C4—C5—C60.4 (4)C11—C16—C17—N3142.5 (2)
C4—C5—C6—C70.6 (5)C24—N3—C18—C231.2 (3)
C5—C6—C7—C81.1 (4)C17—N3—C18—C23175.9 (2)
C6—C7—C8—C30.8 (4)C24—N3—C18—C19178.7 (3)
C6—C7—C8—N2178.7 (3)C17—N3—C18—C194.2 (4)
C4—C3—C8—C70.2 (4)C23—C18—C19—C200.3 (4)
N1—C3—C8—C7178.4 (2)N3—C18—C19—C20179.6 (3)
C4—C3—C8—N2178.2 (2)C18—C19—C20—C211.2 (5)
N1—C3—C8—N20.0 (3)C19—C20—C21—C220.9 (5)
C9—N2—C8—C7177.4 (3)C20—C21—C22—C230.4 (5)
C10—N2—C8—C71.1 (4)C19—C18—C23—N4179.1 (2)
C9—N2—C8—C30.8 (3)N3—C18—C23—N40.8 (3)
C10—N2—C8—C3179.3 (2)C19—C18—C23—C221.0 (4)
C3—N1—C9—N21.4 (3)N3—C18—C23—C22179.0 (2)
C2—N1—C9—N2179.2 (2)C24—N4—C23—C180.1 (3)
C8—N2—C9—N11.4 (3)C25—N4—C23—C18175.1 (2)
C10—N2—C9—N1179.9 (2)C24—N4—C23—C22179.7 (3)
C9—N2—C10—C11114.9 (2)C25—N4—C23—C225.0 (4)
C8—N2—C10—C1166.8 (3)C21—C22—C23—C181.4 (4)
N2—C10—C11—C12111.6 (2)C21—C22—C23—N4178.8 (3)
N2—C10—C11—C1671.3 (2)C23—N4—C24—N30.7 (3)
C16—C11—C12—C132.3 (3)C25—N4—C24—N3175.7 (3)
C10—C11—C12—C13179.6 (2)C18—N3—C24—N41.2 (3)
C11—C12—C13—C141.7 (4)C17—N3—C24—N4175.9 (2)
C12—C13—C14—C150.5 (4)C24—N4—C25—C265.3 (5)
C13—C14—C15—C160.0 (4)C23—N4—C25—C26179.6 (3)
C14—C15—C16—C110.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Br20.932.763.610 (2)152
C10—H10A···Br1i0.972.923.884 (2)171
C10—H10B···Br20.972.913.820 (2)156
C15—H15A···Br2ii0.932.803.700 (3)163
C17—H17B···Br20.972.783.696 (3)158
C24—H24A···Br10.932.733.579 (2)152
C5—H5A···Cg4iii0.932.923.630 (3)135
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H28N42+·2Br
Mr556.34
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)9.7093 (7), 35.796 (3), 8.0340 (6)
β (°) 118.230 (1)
V3)2460.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.45 × 0.32 × 0.23
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.318, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
16606, 8158, 6244
Rint0.023
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.02
No. of reflections8158
No. of parameters291
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.28
Absolute structureFlack (1983), 3727 Friedel pairs
Absolute structure parameter0.009 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Br20.932.763.610 (2)152
C10—H10A···Br1i0.972.923.884 (2)171
C10—H10B···Br20.972.913.820 (2)156
C15—H15A···Br2ii0.932.803.700 (3)163
C17—H17B···Br20.972.783.696 (3)158
C24—H24A···Br10.932.733.579 (2)152
C5—H5A···Cg4iii0.932.923.630 (3)135
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y+2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks Universiti Sains Malaysia (USM) for the Research University grant Nos. 1001/PKIMIA/811157 and 1001/PKIMIA/823082. MAI is grateful to (IPS) USM for financial support [fellowship USM.IPS/JWT/1/19 (JLD 6)] and research attachment fund [P-KM0018/10(R)–308/AIPS/415401]. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohan, V. G., Sreenivasulu, N., Rao, A. S. & Chigiri, S. (2011). Der Pharma Chem. 3, 446–452.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds