organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Imidazol-1-yl)-1-phenyl­propan-1-ol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 31 January 2012; accepted 1 February 2012; online 10 February 2012)

In the title compound, C12H14N2O, the imidazole ring forms a dihedral angle of 66.73 (5)° with the phenyl ring. In the crystal, mol­ecules are linked via O—H⋯N and C—H⋯O hydrogen bonds into sheets lying parallel to (100). The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For general background to and the pharmacological activities of the title compound, see: Latge (1999[Latge, J. P. (1999). Clin. Microbiol. Rev. 12, 310-350.]); Steenbergn & Casadevall (2000[Steenbergn, J. N. & Casadevall, A. (2000). J. Clin. Microbiol. 38, 1974-1976.]); Pacetti & Gelone (2003[Pacetti, S. A. & Gelone, S. P. (2003). Ann Pharmacother. 37, 90-98.]); Spellberg et al. (2006[Spellberg, B. J., Filler, S. G. & Edwards, J. E. (2006). Clin. Infect. Dis. 42, 244-251.]). For the preparation of the title compound, see: Aboul-Enein et al. (2011[Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Saleh, O. A. & Kansoh, A. L. (2011). Arch. Pharm. 344, 794-801.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O

  • Mr = 202.25

  • Monoclinic, P 21 /c

  • a = 9.0352 (5) Å

  • b = 11.8521 (7) Å

  • c = 10.3462 (6) Å

  • β = 109.688 (1)°

  • V = 1043.17 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.34 × 0.26 × 0.19 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.985

  • 14426 measured reflections

  • 3777 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.05

  • 3777 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N2i 0.964 (19) 1.89 (2) 2.8432 (12) 171.7 (17)
C1—H1B⋯O1ii 0.95 2.48 3.4188 (12) 172
C10—H10ACg1iii 0.95 2.68 3.4778 (12) 142
C12—H12ACg1iv 0.95 2.69 3.5373 (11) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Over the past three decades, the incidence of both community-acquired and nosocomial invasive fungal infections has increased substantially. Clinically, candidosis, aspergillosis and cryptococcosis have been identified as three major opportunistic pathogens in the etiology of fungal infections in immune compromised patients (Latge, 1999; Steenbergn & Casadevall, 2000). Candida albicans accounts for the majority of invasive and superficial Candida infections (Pacetti & Gelone, 2003; Spellberg et al., 2006). Accordingly, the need for new antifungal drugs has prompted intensive research worldwide. The azole antifungal drugs constitute one of the major classes which are characterized by having the azole pharmacophoric moiety embedded in their structures. The title molecule exhibited anti-Candida activity (MIC = 10 µg/ml) and can serve as a prototypic molecule for subsequent molecular modifications.

In the title compound, Fig. 1, the imidazole ring (N1/N2/C10–C12, maximum deviation of 0.002 (1) Å at atoms N1 and C12) forms a dihedral angle of 66.73 (5)° with the phenyl ring (C1–C6).

In the crystal structure, Fig. 2, molecules are linked via intermolecular O1—H1O1···N2 and C1—H1B···O1 hydrogen bonds (Table 1) into two-dimensional networks parallel to (100). The crystal structure is further consolidated by C10—H10A···Cg1iii and C12—H12A···Cg1iv (Table 1) interactions, where Cg1 is the centroid of C1–C6 phenyl ring.

Related literature top

For general background to and the pharmacological activities of the title compound, see: Latge (1999); Steenbergn & Casadevall (2000); Pacetti & Gelone (2003); Spellberg et al. (2006). For the preparation of the title compound, see: Aboul-Enein et al. (2011). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

NaBH4 (4.9 g, 0.13 mol) was added portion-wise to an ice cooled, stirred solution of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (8.6 g, 0.043 mol) (Aboul-Enein et al., 2011) in methanol (100 ml). The mixture was stirred overnight at ambient temperature followed by evaporation of methanol under vacuum. The residue was dissolved in ethyl acetate (150 ml) and washed with water (3 × 50 ml). The organic layer was separated, dried (Na2SO4) and evaporated under reduced pressure. The residue was recrystallized from ethanol to give the title compound as colourless blocks. M.p. = 380–382 K.

Refinement top

Atom H1O1 was located in a difference Fourier map and refined freely with O1—H1O1 = 0.97 (2) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-(1H-Imidazol-1-yl)-1-phenylpropan-1-ol top
Crystal data top
C12H14N2OF(000) = 432
Mr = 202.25Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6547 reflections
a = 9.0352 (5) Åθ = 3.0–32.6°
b = 11.8521 (7) ŵ = 0.08 mm1
c = 10.3462 (6) ÅT = 100 K
β = 109.688 (1)°Block, colourless
V = 1043.17 (10) Å30.34 × 0.26 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3777 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.972, Tmax = 0.985k = 1717
14426 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.3608P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H14N2OV = 1043.17 (10) Å3
Mr = 202.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0352 (5) ŵ = 0.08 mm1
b = 11.8521 (7) ÅT = 100 K
c = 10.3462 (6) Å0.34 × 0.26 × 0.19 mm
β = 109.688 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3777 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3245 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.022
14426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.67 e Å3
3777 reflectionsΔρmin = 0.26 e Å3
140 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48286 (8)0.08562 (6)0.36457 (8)0.02067 (16)
N10.25481 (8)0.31589 (7)0.35682 (8)0.01420 (15)
N20.32358 (10)0.45590 (7)0.24613 (9)0.02066 (17)
C10.31643 (10)0.13411 (8)0.29554 (9)0.01560 (16)
H1B0.36890.12850.39180.019*
C20.27877 (11)0.23971 (8)0.23471 (10)0.01808 (18)
H2B0.30730.30590.28920.022*
C30.19909 (12)0.24865 (8)0.09354 (10)0.01975 (18)
H3A0.17350.32080.05190.024*
C40.15757 (11)0.15146 (9)0.01470 (9)0.01935 (18)
H4A0.10130.15700.08090.023*
C50.19809 (11)0.04577 (8)0.07534 (9)0.01624 (17)
H5A0.17130.02030.02030.019*
C60.27760 (10)0.03610 (8)0.21592 (9)0.01380 (16)
C70.32242 (10)0.07925 (8)0.28116 (9)0.01549 (16)
H7A0.30170.13700.20660.019*
C80.22380 (10)0.10796 (8)0.37099 (9)0.01587 (16)
H8A0.11180.11160.31240.019*
H8B0.23500.04640.43830.019*
C90.26905 (11)0.21929 (8)0.44836 (9)0.01656 (17)
H9A0.20070.23170.50440.020*
H9B0.37890.21420.51170.020*
C100.37482 (11)0.37408 (8)0.33713 (10)0.01860 (18)
H10A0.48280.35790.38330.022*
C110.16177 (11)0.44949 (8)0.20509 (10)0.01811 (18)
H11A0.09140.49800.13970.022*
C120.11734 (10)0.36343 (8)0.27205 (9)0.01602 (17)
H12A0.01310.34110.26210.019*
H1O10.543 (2)0.0448 (17)0.3186 (19)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0152 (3)0.0220 (4)0.0251 (3)0.0023 (2)0.0071 (3)0.0072 (3)
N10.0142 (3)0.0116 (3)0.0184 (3)0.0000 (2)0.0076 (3)0.0010 (2)
N20.0182 (3)0.0179 (4)0.0290 (4)0.0007 (3)0.0120 (3)0.0036 (3)
C10.0146 (3)0.0167 (4)0.0159 (3)0.0024 (3)0.0057 (3)0.0012 (3)
C20.0204 (4)0.0137 (4)0.0232 (4)0.0028 (3)0.0114 (3)0.0018 (3)
C30.0227 (4)0.0154 (4)0.0244 (4)0.0015 (3)0.0121 (3)0.0055 (3)
C40.0207 (4)0.0212 (4)0.0160 (4)0.0009 (3)0.0060 (3)0.0035 (3)
C50.0174 (4)0.0158 (4)0.0159 (4)0.0010 (3)0.0062 (3)0.0007 (3)
C60.0125 (3)0.0141 (4)0.0160 (3)0.0003 (3)0.0063 (3)0.0015 (3)
C70.0155 (3)0.0142 (4)0.0180 (4)0.0009 (3)0.0072 (3)0.0011 (3)
C80.0176 (4)0.0127 (4)0.0205 (4)0.0004 (3)0.0106 (3)0.0001 (3)
C90.0207 (4)0.0135 (4)0.0176 (4)0.0012 (3)0.0091 (3)0.0003 (3)
C100.0141 (4)0.0174 (4)0.0262 (4)0.0003 (3)0.0092 (3)0.0014 (3)
C110.0176 (4)0.0168 (4)0.0219 (4)0.0032 (3)0.0092 (3)0.0020 (3)
C120.0136 (3)0.0160 (4)0.0195 (4)0.0003 (3)0.0069 (3)0.0012 (3)
Geometric parameters (Å, º) top
O1—C71.4173 (11)C4—H4A0.9500
O1—H1O10.97 (2)C5—C61.3931 (12)
N1—C101.3571 (11)C5—H5A0.9500
N1—C121.3767 (11)C6—C71.5180 (12)
N1—C91.4636 (12)C7—C81.5269 (12)
N2—C101.3218 (13)C7—H7A1.0000
N2—C111.3802 (12)C8—C91.5260 (13)
C1—C21.3907 (13)C8—H8A0.9900
C1—C61.3986 (12)C8—H8B0.9900
C1—H1B0.9500C9—H9A0.9900
C2—C31.3979 (14)C9—H9B0.9900
C2—H2B0.9500C10—H10A0.9500
C3—C41.3881 (14)C11—C121.3671 (13)
C3—H3A0.9500C11—H11A0.9500
C4—C51.3936 (13)C12—H12A0.9500
C7—O1—H1O1107.8 (11)C6—C7—C8110.39 (7)
C10—N1—C12106.94 (8)O1—C7—H7A108.7
C10—N1—C9126.45 (8)C6—C7—H7A108.7
C12—N1—C9126.60 (7)C8—C7—H7A108.7
C10—N2—C11105.03 (8)C9—C8—C7113.82 (7)
C2—C1—C6120.42 (8)C9—C8—H8A108.8
C2—C1—H1B119.8C7—C8—H8A108.8
C6—C1—H1B119.8C9—C8—H8B108.8
C1—C2—C3120.16 (9)C7—C8—H8B108.8
C1—C2—H2B119.9H8A—C8—H8B107.7
C3—C2—H2B119.9N1—C9—C8112.79 (7)
C4—C3—C2119.55 (9)N1—C9—H9A109.0
C4—C3—H3A120.2C8—C9—H9A109.0
C2—C3—H3A120.2N1—C9—H9B109.0
C3—C4—C5120.22 (8)C8—C9—H9B109.0
C3—C4—H4A119.9H9A—C9—H9B107.8
C5—C4—H4A119.9N2—C10—N1111.96 (8)
C6—C5—C4120.59 (8)N2—C10—H10A124.0
C6—C5—H5A119.7N1—C10—H10A124.0
C4—C5—H5A119.7C12—C11—N2110.28 (8)
C5—C6—C1119.04 (8)C12—C11—H11A124.9
C5—C6—C7120.32 (8)N2—C11—H11A124.9
C1—C6—C7120.64 (8)C11—C12—N1105.80 (8)
O1—C7—C6112.55 (7)C11—C12—H12A127.1
O1—C7—C8107.72 (7)N1—C12—H12A127.1
C6—C1—C2—C31.16 (13)O1—C7—C8—C952.81 (10)
C1—C2—C3—C40.15 (14)C6—C7—C8—C9176.07 (7)
C2—C3—C4—C51.41 (14)C10—N1—C9—C8107.01 (10)
C3—C4—C5—C61.37 (14)C12—N1—C9—C871.41 (11)
C4—C5—C6—C10.06 (13)C7—C8—C9—N159.04 (10)
C4—C5—C6—C7179.56 (8)C11—N2—C10—N10.15 (11)
C2—C1—C6—C51.20 (12)C12—N1—C10—N20.31 (11)
C2—C1—C6—C7178.30 (8)C9—N1—C10—N2178.99 (8)
C5—C6—C7—O1129.62 (8)C10—N2—C11—C120.07 (11)
C1—C6—C7—O149.88 (10)N2—C11—C12—N10.25 (11)
C5—C6—C7—C8109.98 (9)C10—N1—C12—C110.33 (10)
C1—C6—C7—C870.52 (10)C9—N1—C12—C11179.01 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N2i0.964 (19)1.89 (2)2.8432 (12)171.7 (17)
C1—H1B···O1ii0.952.483.4188 (12)172
C10—H10A···Cg1iii0.952.683.4778 (12)142
C12—H12A···Cg1iv0.952.693.5373 (11)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N2O
Mr202.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0352 (5), 11.8521 (7), 10.3462 (6)
β (°) 109.688 (1)
V3)1043.17 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.26 × 0.19
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14426, 3777, 3245
Rint0.022
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.05
No. of reflections3777
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N2i0.964 (19)1.89 (2)2.8432 (12)171.7 (17)
C1—H1B···O1ii0.952.483.4188 (12)172
C10—H10A···Cg1iii0.952.683.4778 (12)142
C12—H12A···Cg1iv0.952.693.5373 (11)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160) and the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for supporting this study.

References

First citationAboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Saleh, O. A. & Kansoh, A. L. (2011). Arch. Pharm. 344, 794–801.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLatge, J. P. (1999). Clin. Microbiol. Rev. 12, 310–350.  Web of Science PubMed CAS Google Scholar
First citationPacetti, S. A. & Gelone, S. P. (2003). Ann Pharmacother. 37, 90–98.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpellberg, B. J., Filler, S. G. & Edwards, J. E. (2006). Clin. Infect. Dis. 42, 244–251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSteenbergn, J. N. & Casadevall, A. (2000). J. Clin. Microbiol. 38, 1974–1976.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds