organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(4-Meth­­oxy­benzyl­­idene)-2,3-di­hydro-1H-inden-1-one

aCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 February 2012; accepted 16 February 2012; online 24 February 2012)

In the title compound, C17H14O2, the indan-1-one system is almost planar (r.m.s. deviation = 0.007 Å) and the benzene ring is twisted out of its plane by 8.15 (6)°. The conformation about the C=C double bond [1.348 (2) Å] is E. Helical supra­molecular chains along [010] feature in the crystal packing; these are sustained by C—H⋯O hydrogen bonds and ππ inter­actions between translationally related indan-1-one systems [centroid–centroid distance = 3.7970 (10) Å].

Related literature

For related cyclic ketone structures, see: Asiri, Faidallah & Ng (2011[Asiri, A. M., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o1611.]); Asiri, Al-Youbi et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2443.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O2

  • Mr = 250.28

  • Monoclinic, P 21 /c

  • a = 15.1177 (10) Å

  • b = 3.9322 (3) Å

  • c = 20.7072 (13) Å

  • β = 94.615 (6)°

  • V = 1226.97 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.974, Tmax = 0.997

  • 4873 measured reflections

  • 2792 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.03

  • 2792 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.58 3.5327 (19) 175
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 2-(4-methoxybenzylidene)indan-1-one (I), was investigated in connection with recent structure determinations of related cyclic ketone derivatives (Asiri, Faidallah & Ng, 2011; Asiri, Al-Youbi et al., 2011).

The nine non-hydrogen atoms of the inden-1-one system in (I), Fig. 1, are co-planar with a r.m.s. deviation = 0.007 Å. The dihedral angle between the inden-1-one system and benzene ring is 8.15 (6)°, and the methoxy substituent is co-planar with the benzene ring to which it is connected [the C17—O2—C14—C13 torsion angle = -0.6 (2)°]. The configuration about the C9C10 double bond [1.348 (2) Å] is E.

In the crystal packing, molecules aggregate along the 21 axis via C—H···O, Table 1, and π(C1,C2,C7—C9)···π(C2–C7)i interactions between symmetry related rings of the inden-1-one system [centroid···centroid distance = 3.7970 (10) °, angle between rings = 0.51 (8)° for i: x, -1 + y, z]. There are no specific interactions between the supramolecular chains, Fig. 3.

Related literature top

For related cyclic ketone structures, see: Asiri, Faidallah & Ng (2011); Asiri, Al-Youbi et al. (2011).

Experimental top

A solution of the p-anisaldehyde (1.36 g, 0.01 mol) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g,0.01 mol) in ethanolic KOH (20%, 20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution as light-brown plates, M.pt.: 491–493 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Two reflections, i.e. (1 0 2) and (0 0 14), were omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along [010] in (I). The C—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I), highlighting the stacking of chains.
(2E)-2-(4-Methoxybenzylidene)-2,3-dihydro-1H-inden-1-one top
Crystal data top
C17H14O2F(000) = 528
Mr = 250.28Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1476 reflections
a = 15.1177 (10) Åθ = 2.3–27.5°
b = 3.9322 (3) ŵ = 0.09 mm1
c = 20.7072 (13) ÅT = 100 K
β = 94.615 (6)°Plate, light brown
V = 1226.97 (15) Å30.30 × 0.30 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2792 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2131 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 1419
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 35
Tmin = 0.974, Tmax = 0.997l = 2622
4873 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.054P)2 + 0.3168P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H14O2V = 1226.97 (15) Å3
Mr = 250.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1177 (10) ŵ = 0.09 mm1
b = 3.9322 (3) ÅT = 100 K
c = 20.7072 (13) Å0.30 × 0.30 × 0.03 mm
β = 94.615 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2792 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2131 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.997Rint = 0.030
4873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2792 reflectionsΔρmin = 0.25 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21241 (7)0.4870 (3)0.24618 (5)0.0249 (3)
O20.73625 (7)0.5812 (3)0.43081 (5)0.0233 (3)
C10.22115 (10)0.6064 (4)0.30095 (8)0.0186 (4)
C20.15106 (10)0.7692 (4)0.33660 (7)0.0184 (4)
C30.06204 (10)0.8185 (4)0.31668 (8)0.0216 (4)
H30.03840.74490.27510.026*
C40.00833 (11)0.9776 (4)0.35877 (8)0.0227 (4)
H40.05261.01550.34600.027*
C50.04381 (11)1.0821 (5)0.42005 (8)0.0240 (4)
H50.00631.18940.44860.029*
C60.13295 (11)1.0321 (4)0.44003 (8)0.0215 (4)
H60.15651.10420.48170.026*
C70.18690 (10)0.8739 (4)0.39758 (8)0.0187 (4)
C80.28497 (10)0.7948 (4)0.40744 (7)0.0193 (4)
H8A0.29780.64050.44480.023*
H8B0.32031.00540.41460.023*
C90.30473 (10)0.6238 (4)0.34465 (7)0.0181 (4)
C100.38144 (10)0.5031 (4)0.32473 (7)0.0182 (4)
H100.37580.39290.28380.022*
C110.47172 (10)0.5132 (4)0.35550 (7)0.0183 (4)
C120.53982 (10)0.3750 (4)0.32146 (8)0.0193 (4)
H120.52440.26730.28110.023*
C130.62868 (10)0.3885 (4)0.34408 (8)0.0200 (4)
H130.67310.29330.31960.024*
C140.65108 (10)0.5448 (4)0.40343 (8)0.0189 (4)
C150.58486 (10)0.6782 (4)0.43933 (8)0.0207 (4)
H150.60050.78110.48020.025*
C160.49691 (10)0.6619 (4)0.41602 (7)0.0197 (4)
H160.45260.75240.44120.024*
C170.80559 (10)0.4433 (5)0.39500 (8)0.0242 (4)
H170.86290.47340.42000.036*
H17B0.80630.56210.35340.036*
H17C0.79480.20050.38720.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (6)0.0315 (7)0.0198 (6)0.0012 (5)0.0025 (5)0.0041 (5)
O20.0152 (6)0.0311 (7)0.0235 (6)0.0017 (5)0.0001 (4)0.0045 (5)
C10.0193 (8)0.0181 (8)0.0187 (8)0.0016 (7)0.0037 (6)0.0015 (7)
C20.0189 (8)0.0186 (9)0.0181 (8)0.0012 (7)0.0033 (6)0.0029 (7)
C30.0200 (8)0.0225 (9)0.0221 (8)0.0033 (7)0.0009 (6)0.0017 (7)
C40.0171 (8)0.0248 (9)0.0263 (8)0.0013 (7)0.0023 (6)0.0050 (8)
C50.0221 (8)0.0261 (9)0.0247 (9)0.0028 (8)0.0077 (7)0.0027 (8)
C60.0235 (8)0.0215 (9)0.0195 (8)0.0010 (7)0.0023 (6)0.0006 (7)
C70.0189 (8)0.0169 (8)0.0202 (8)0.0006 (7)0.0022 (6)0.0035 (7)
C80.0188 (8)0.0207 (9)0.0183 (8)0.0001 (7)0.0010 (6)0.0001 (7)
C90.0196 (8)0.0167 (8)0.0183 (8)0.0011 (7)0.0029 (6)0.0015 (7)
C100.0217 (8)0.0174 (8)0.0158 (7)0.0017 (7)0.0029 (6)0.0007 (7)
C110.0192 (8)0.0166 (8)0.0192 (7)0.0008 (7)0.0032 (6)0.0028 (7)
C120.0224 (8)0.0188 (8)0.0169 (7)0.0004 (7)0.0019 (6)0.0008 (7)
C130.0189 (8)0.0214 (9)0.0203 (8)0.0028 (7)0.0051 (6)0.0013 (7)
C140.0168 (8)0.0196 (8)0.0202 (8)0.0003 (7)0.0008 (6)0.0034 (7)
C150.0237 (8)0.0222 (9)0.0160 (7)0.0029 (7)0.0014 (6)0.0005 (7)
C160.0193 (8)0.0215 (9)0.0187 (8)0.0031 (7)0.0046 (6)0.0013 (7)
C170.0149 (8)0.0292 (10)0.0285 (9)0.0025 (7)0.0022 (6)0.0025 (8)
Geometric parameters (Å, º) top
O1—C11.2249 (19)C8—H8B0.9900
O2—C141.3721 (19)C9—C101.348 (2)
O2—C171.4379 (18)C10—C111.460 (2)
C1—C21.484 (2)C10—H100.9500
C1—C91.495 (2)C11—C121.403 (2)
C2—C31.389 (2)C11—C161.407 (2)
C2—C71.396 (2)C12—C131.388 (2)
C3—C41.387 (2)C12—H120.9500
C3—H30.9500C13—C141.391 (2)
C4—C51.399 (2)C13—H130.9500
C4—H40.9500C14—C151.396 (2)
C5—C61.392 (2)C15—C161.379 (2)
C5—H50.9500C15—H150.9500
C6—C71.393 (2)C16—H160.9500
C6—H60.9500C17—H170.9800
C7—C81.512 (2)C17—H17B0.9800
C8—C91.515 (2)C17—H17C0.9800
C8—H8A0.9900
C14—O2—C17116.51 (12)C10—C9—C8130.76 (14)
O1—C1—C2126.71 (14)C1—C9—C8108.93 (13)
O1—C1—C9126.93 (14)C9—C10—C11130.85 (15)
C2—C1—C9106.35 (13)C9—C10—H10114.6
C3—C2—C7121.58 (15)C11—C10—H10114.6
C3—C2—C1128.75 (15)C12—C11—C16116.83 (14)
C7—C2—C1109.67 (14)C12—C11—C10117.92 (14)
C4—C3—C2118.60 (15)C16—C11—C10125.20 (14)
C4—C3—H3120.7C13—C12—C11123.04 (15)
C2—C3—H3120.7C13—C12—H12118.5
C3—C4—C5120.09 (15)C11—C12—H12118.5
C3—C4—H4120.0C12—C13—C14118.37 (14)
C5—C4—H4120.0C12—C13—H13120.8
C6—C5—C4121.30 (15)C14—C13—H13120.8
C6—C5—H5119.3O2—C14—C13124.38 (14)
C4—C5—H5119.3O2—C14—C15115.46 (14)
C5—C6—C7118.54 (15)C13—C14—C15120.16 (14)
C5—C6—H6120.7C16—C15—C14120.57 (15)
C7—C6—H6120.7C16—C15—H15119.7
C6—C7—C2119.89 (15)C14—C15—H15119.7
C6—C7—C8128.61 (15)C15—C16—C11121.01 (14)
C2—C7—C8111.49 (14)C15—C16—H16119.5
C7—C8—C9103.55 (13)C11—C16—H16119.5
C7—C8—H8A111.1O2—C17—H17109.5
C9—C8—H8A111.1O2—C17—H17B109.5
C7—C8—H8B111.1H17—C17—H17B109.5
C9—C8—H8B111.1O2—C17—H17C109.5
H8A—C8—H8B109.0H17—C17—H17C109.5
C10—C9—C1120.30 (14)H17B—C17—H17C109.5
O1—C1—C2—C30.6 (3)C2—C1—C9—C80.59 (18)
C9—C1—C2—C3179.53 (16)C7—C8—C9—C10178.56 (17)
O1—C1—C2—C7179.84 (16)C7—C8—C9—C10.04 (17)
C9—C1—C2—C70.96 (18)C1—C9—C10—C11174.72 (16)
C7—C2—C3—C40.3 (3)C8—C9—C10—C113.7 (3)
C1—C2—C3—C4179.78 (16)C9—C10—C11—C12177.64 (17)
C2—C3—C4—C50.5 (3)C9—C10—C11—C160.0 (3)
C3—C4—C5—C60.4 (3)C16—C11—C12—C131.8 (2)
C4—C5—C6—C70.1 (3)C10—C11—C12—C13176.01 (15)
C5—C6—C7—C20.1 (2)C11—C12—C13—C140.3 (3)
C5—C6—C7—C8179.26 (16)C17—O2—C14—C130.6 (2)
C3—C2—C7—C60.0 (3)C17—O2—C14—C15179.49 (15)
C1—C2—C7—C6179.54 (15)C12—C13—C14—O2178.74 (15)
C3—C2—C7—C8179.47 (15)C12—C13—C14—C151.1 (2)
C1—C2—C7—C80.97 (19)O2—C14—C15—C16178.80 (15)
C6—C7—C8—C9180.00 (16)C13—C14—C15—C161.1 (3)
C2—C7—C8—C90.57 (18)C14—C15—C16—C110.4 (3)
O1—C1—C9—C100.7 (3)C12—C11—C16—C151.8 (2)
C2—C1—C9—C10178.19 (15)C10—C11—C16—C15175.80 (16)
O1—C1—C9—C8179.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.583.5327 (19)175
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14O2
Mr250.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.1177 (10), 3.9322 (3), 20.7072 (13)
β (°) 94.615 (6)
V3)1226.97 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.974, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4873, 2792, 2131
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.03
No. of reflections2792
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.583.5327 (19)175
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

King Abdulaziz University is thanked for support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o1611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds