organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(1-cyclo­hexyl­eth­yl)imidazolidine-2-thione

aDepartment of Chemistry, University of Malakand, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cDepartment of Pharmacy, University of Malakand, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 February 2012; accepted 12 February 2012; online 17 February 2012)

The complete mol­ecule of the title compound, C19H34N2S, is generated by crystallographic twofold symmetry, with the C=S group lying on the rotation axis. A short C—H⋯S contact occurs in the mol­ecule. The five-membered ring is twisted and the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean plane of the five-membered ring and the basal plane of the cyclo­hexyl ring is 75.32 (13)°.

Related literature

For a related structure, see: Kazak et al. (2005[Kazak, C., Yilmaz, V. T., Servi, S., Koca, M. & Heinemann, F. W. (2005). Acta Cryst. C61, o348-o350.]).

[Scheme 1]

Experimental

Crystal data
  • C19H34N2S

  • Mr = 322.54

  • Tetragonal, P 41 21 2

  • a = 6.1008 (3) Å

  • c = 53.790 (2) Å

  • V = 2002.04 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 18805 measured reflections

  • 2500 independent reflections

  • 1357 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.176

  • S = 1.04

  • 2500 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 874 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.98 2.65 3.174 (3) 114

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a part of our project related to imidazolidinethione.

The crystal structure of 1,3-dibenzoyl-4,5-dihydro-1H-imidazole-2(3H)-thione (Kazak et al., 2005) has been published which is related to the title compound (I), (Fig. 1).

The molecule has twofold symmetry about the CS (C1S1) of imidazolidinethione and therefore, the asymmetric unit is half of the molecule. The asymmetric part of imidazolidinethione moiety A (S1/C1/N1/C2) and the basal plane of cyclohexyl ring B (C6/C7/C9/C10) are almost planar with r.m.s. deviations of 0.036 and 0.004 Å, respectively. The dihedral angle between A/B is 75.32 (13)°. The cyclohexyl adopts chair conformation with apical C-atoms C5 and C8 at a distance of -0.651 (5) and 0.638 (8) Å, respectively from the basal plane B. There exist weak intramolecular H-bondings of C—H···S type (Table 1, Fig. 1) and form S(5) ring motif. No other interaction is found in the crystal.

Related literature top

For a related structure, see: Kazak et al. (2005).

Experimental top

(S)-1-cyclohexylethanamine (2.5 equiv.) and 1,2-dibromoethane (1 equiv.) were placed in a pressure vessel and heated at 393 K for 5 h, during which the reaction mixture solidified. The system was cooled to room temperature and NaOH (1 N, 20 ml) and ethyl acetate (20 ml) were added in to the reaction mixture. After dissolving the reaction mixture, the crude product was extracted with ethyl acetate (3 × 25 ml). The combined organic layers were concentrated and subjected to column chromatography. The product obtained from column chromatography (1 equiv.) was added to toluene (0.4 M) in pressure vessel and thiocarbonyldiimidazol (1.1 equiv.) was added to it. This mixture was heated about 373 K for 15 h. Again the extraction with ethyl acetate (3 × 25 ml) was carried out by using column chromatography to get the required product. Yield: 90%. Colourless prisms of (I) were obtained by recrystallizing from methanol after 48 h.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the short C—H···S contacts.
1,3-Bis(1-cyclohexylethyl)imidazolidine-2-thione top
Crystal data top
C19H34N2SDx = 1.070 Mg m3
Mr = 322.54Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 1358 reflections
Hall symbol: P 4abw 2nwθ = 3.0–28.3°
a = 6.1008 (3) ŵ = 0.16 mm1
c = 53.790 (2) ÅT = 296 K
V = 2002.04 (17) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.20 mm
F(000) = 712
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube1357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω scansh = 84
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 78
Tmin = 0.957, Tmax = 0.966l = 7165
18805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.069P)2 + 0.4327P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2500 reflectionsΔρmax = 0.12 e Å3
102 parametersΔρmin = 0.12 e Å3
0 restraintsAbsolute structure: Flack (1983), with 874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C19H34N2SZ = 4
Mr = 322.54Mo Kα radiation
Tetragonal, P41212µ = 0.16 mm1
a = 6.1008 (3) ÅT = 296 K
c = 53.790 (2) Å0.30 × 0.25 × 0.20 mm
V = 2002.04 (17) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1357 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.047
18805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.176Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.12 e Å3
2500 reflectionsAbsolute structure: Flack (1983), with 874 Friedel pairs
102 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56724 (12)0.56724 (12)0.00000.0822 (4)
N10.2683 (4)0.2943 (4)0.02021 (4)0.0735 (7)
C10.3729 (4)0.3729 (4)0.00000.0652 (10)
C20.0922 (6)0.1442 (6)0.01337 (5)0.0868 (10)
H2A0.05000.21380.01490.104*
H2B0.09500.01310.02360.104*
C30.2873 (5)0.3852 (5)0.04524 (5)0.0696 (8)
H30.41320.48490.04510.083*
C40.0864 (7)0.5222 (6)0.05128 (8)0.1131 (13)
H4A0.11470.60930.06580.170*
H4B0.03610.42730.05440.170*
H4C0.05370.61670.03750.170*
C50.3390 (5)0.2040 (5)0.06392 (4)0.0652 (8)
H50.21390.10320.06430.078*
C60.5406 (6)0.0737 (6)0.05665 (6)0.0915 (10)
H6A0.51390.00130.04090.110*
H6B0.66300.17320.05440.110*
C70.6000 (9)0.0961 (7)0.07594 (8)0.1415 (18)
H7A0.48670.20750.07650.170*
H7B0.73630.16660.07120.170*
C80.6254 (10)0.0031 (7)0.10136 (8)0.147 (2)
H8A0.65290.11230.11340.177*
H8B0.75060.10110.10140.177*
C90.4288 (10)0.1250 (8)0.10869 (7)0.1370 (18)
H9A0.45370.19400.12470.164*
H9B0.30700.02400.11050.164*
C100.3709 (7)0.2961 (6)0.09005 (5)0.0976 (12)
H10A0.48630.40540.08960.117*
H10B0.23690.36850.09520.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0833 (6)0.0833 (6)0.0798 (7)0.0262 (6)0.0097 (5)0.0097 (5)
N10.0914 (18)0.0764 (16)0.0526 (12)0.0234 (13)0.0101 (12)0.0110 (12)
C10.0661 (15)0.0661 (15)0.063 (2)0.0067 (19)0.0152 (14)0.0152 (14)
C20.095 (2)0.099 (3)0.0666 (16)0.037 (2)0.0083 (16)0.0109 (16)
C30.086 (2)0.0616 (18)0.0614 (16)0.0014 (16)0.0048 (15)0.0017 (13)
C40.121 (3)0.091 (3)0.128 (3)0.026 (3)0.024 (3)0.017 (2)
C50.081 (2)0.0624 (16)0.0520 (14)0.0071 (15)0.0022 (14)0.0016 (13)
C60.109 (3)0.087 (2)0.079 (2)0.027 (2)0.0062 (19)0.0082 (18)
C70.181 (5)0.087 (3)0.157 (4)0.048 (3)0.061 (4)0.011 (3)
C80.238 (7)0.094 (3)0.110 (3)0.014 (4)0.088 (4)0.021 (2)
C90.219 (6)0.124 (4)0.068 (2)0.022 (4)0.019 (3)0.024 (2)
C100.144 (4)0.094 (2)0.0548 (16)0.008 (2)0.0080 (19)0.0014 (17)
Geometric parameters (Å, º) top
S1—C11.677 (3)C3—H30.9800
N1—C11.349 (3)C4—H4A0.9600
N1—C21.458 (4)C4—H4B0.9600
N1—C31.461 (4)C4—H4C0.9600
C2—C2i1.506 (4)C5—H50.9800
C3—C41.519 (5)C6—H6A0.9700
C3—C51.527 (4)C6—H6B0.9700
C5—C61.516 (5)C7—H7A0.9700
C5—C101.526 (4)C7—H7B0.9700
C6—C71.510 (6)C8—H8A0.9700
C7—C81.503 (6)C8—H8B0.9700
C8—C91.465 (8)C9—H9A0.9700
C9—C101.490 (6)C9—H9B0.9700
C2—H2A0.9700C10—H10A0.9700
C2—H2B0.9700C10—H10B0.9700
C1—N1—C2111.6 (2)H4A—C4—H4C109.00
C1—N1—C3124.8 (2)H4B—C4—H4C109.00
C2—N1—C3122.0 (2)C3—C5—H5108.00
S1—C1—N1125.87 (13)C6—C5—H5108.00
S1—C1—N1i125.87 (13)C10—C5—H5108.00
N1—C1—N1i108.3 (2)C5—C6—H6A109.00
N1—C2—C2i102.6 (3)C5—C6—H6B109.00
N1—C3—C4110.0 (3)C7—C6—H6A109.00
N1—C3—C5110.4 (2)C7—C6—H6B109.00
C4—C3—C5115.1 (3)H6A—C6—H6B108.00
C3—C5—C6112.2 (2)C6—C7—H7A109.00
C3—C5—C10111.5 (3)C6—C7—H7B109.00
C6—C5—C10109.1 (3)C8—C7—H7A109.00
C5—C6—C7112.2 (3)C8—C7—H7B109.00
C6—C7—C8111.9 (3)H7A—C7—H7B108.00
C7—C8—C9111.4 (4)C7—C8—H8A109.00
C8—C9—C10111.6 (4)C7—C8—H8B109.00
C5—C10—C9113.1 (3)C9—C8—H8A109.00
N1—C2—H2A111.00C9—C8—H8B109.00
N1—C2—H2B111.00H8A—C8—H8B108.00
H2A—C2—H2B109.00C8—C9—H9A109.00
C2i—C2—H2A111.00C8—C9—H9B109.00
C2i—C2—H2B111.00C10—C9—H9A109.00
N1—C3—H3107.00C10—C9—H9B109.00
C4—C3—H3107.00H9A—C9—H9B108.00
C5—C3—H3107.00C5—C10—H10A109.00
C3—C4—H4A109.00C5—C10—H10B109.00
C3—C4—H4B109.00C9—C10—H10A109.00
C3—C4—H4C109.00C9—C10—H10B109.00
H4A—C4—H4B109.00H10A—C10—H10B108.00
C2—N1—C1—S1173.7 (2)N1—C3—C5—C10177.2 (3)
C2—N1—C1—N1i6.3 (3)C4—C3—C5—C6179.8 (3)
C3—N1—C1—S18.2 (4)C4—C3—C5—C1057.6 (4)
C3—N1—C1—N1i171.8 (2)C3—C5—C6—C7176.4 (3)
C1—N1—C2—C2i15.4 (3)C10—C5—C6—C752.4 (4)
C3—N1—C2—C2i178.6 (3)C3—C5—C10—C9178.1 (4)
C1—N1—C3—C4102.2 (3)C6—C5—C10—C953.7 (4)
C1—N1—C3—C5129.7 (3)C5—C6—C7—C854.2 (5)
C2—N1—C3—C461.9 (4)C6—C7—C8—C955.0 (5)
C2—N1—C3—C566.2 (3)C7—C8—C9—C1055.6 (5)
N1—C2—C2i—N1i17.5 (3)C8—C9—C10—C556.3 (5)
N1—C3—C5—C654.5 (3)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.982.653.174 (3)114

Experimental details

Crystal data
Chemical formulaC19H34N2S
Mr322.54
Crystal system, space groupTetragonal, P41212
Temperature (K)296
a, c (Å)6.1008 (3), 53.790 (2)
V3)2002.04 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
18805, 2500, 1357
Rint0.047
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.176, 1.04
No. of reflections2500
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12
Absolute structureFlack (1983), with 874 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.982.65003.174 (3)114
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors at Malakand University are also grateful for financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKazak, C., Yilmaz, V. T., Servi, S., Koca, M. & Heinemann, F. W. (2005). Acta Cryst. C61, o348–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds