organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl­ammonium thio­cyanate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xraydata@yahoo.com.cn

(Received 13 February 2012; accepted 18 February 2012; online 29 February 2012)

In the title mol­ecular salt, C6H16N+·NCS, the cation possesses approximate local twofold rotation symmetry. One of its NH atoms forms a hydrogen bond to a thio­cyanate N atom and the other to a thio­cyanate S atom. This results in [001] chains of alternating cations and anions.

Related literature

For background to mol­ecular ferroelectrics, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·NCS

  • Mr = 160.28

  • Orthorhombic, P b c a

  • a = 11.785 (2) Å

  • b = 12.716 (3) Å

  • c = 13.288 (3) Å

  • V = 1991.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 19260 measured reflections

  • 2286 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.107

  • S = 1.12

  • 2286 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2D⋯N1i 0.90 1.99 2.888 (2) 172
N2—H2E⋯S1 0.90 2.47 3.3490 (14) 166
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containig amino cations have attracted attention as materials that display ferroelectric-paraelectric phase transitions (Fu et al., 2011). As part of our ongonig studies in this area, we now present the crystal structure of the title compound, di-isopropylammonium thiocyanate.

The asymmetric unit of the title compound contains one di-isopropylammonium cation and one SCN- anion (Fig. 1). The amine N2 atom was protonated. The SCN- anion is almost linear with the bond angle of 179.80 (2)°. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the ammonium H atoms are involved in intermolecular N—H···N and N—H···S H-bonding interactions with the N and S atoms of the SCN- anion (with N···N and N···S distances of 2.888 (2)Å to 3.349 (2)Å, respectively). These hydrogen bonds link the ionic units into a one-dimentional chain along the c-axis (Table 1 and Fig.2).

Related literature top

For background to molecular ferroelectrics, see: Fu et al. (2011).

Experimental top

A mixture of di-isopropylamine (0.8 mmol), HCl (0.8 mmol) and KSCN (0.8 mmol) were dissolved in EtOH/distilled water (1:1 v/v) solvent. The solution was slowly evaporated in air affording colourless blocks.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.98 Å(C methine) and C-H = 0.96 Å(C methyl) with Uiso(H) = 1.2Ueq(C methine) and Uiso(H) = 1.5Ueq(C methyl). The positional parameters of the H atoms (N) were refined freely. And in the last stage of the refinement, they were restrained with the H—N = 0.90 (2)Å, and Uiso(H)=1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the one-dimensionnal hydrogen bondings chain along the c axis (dashed line). H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
Diisopropylammonium thiocyanate top
Crystal data top
C6H16N+·NCSF(000) = 704
Mr = 160.28Dx = 1.069 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2286 reflections
a = 11.785 (2) Åθ = 3.1–27.5°
b = 12.716 (3) ŵ = 0.27 mm1
c = 13.288 (3) ÅT = 298 K
V = 1991.3 (7) Å3Block, colourless
Z = 80.20 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.90, Tmax = 1.00l = 1717
19260 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4971P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2286 reflectionsΔρmax = 0.18 e Å3
96 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (3)
Crystal data top
C6H16N+·NCSV = 1991.3 (7) Å3
Mr = 160.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.785 (2) ŵ = 0.27 mm1
b = 12.716 (3) ÅT = 298 K
c = 13.288 (3) Å0.20 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1864 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.051
19260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
2286 reflectionsΔρmin = 0.15 e Å3
96 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.42899 (11)0.17785 (9)0.36893 (10)0.0400 (3)
H2D0.39150.21120.31930.048*
H2E0.37690.15670.41410.048*
C30.48334 (15)0.08132 (13)0.32473 (13)0.0476 (4)
H3A0.52260.04340.37870.057*
C50.57312 (16)0.20499 (14)0.50250 (15)0.0551 (5)
H5A0.62170.15220.47410.083*
H5B0.52240.17290.55000.083*
H5C0.61840.25710.53610.083*
C60.50507 (15)0.25665 (13)0.41958 (13)0.0471 (4)
H6A0.55780.28500.36940.056*
C70.4316 (2)0.34550 (15)0.45802 (16)0.0666 (6)
H7A0.38830.37430.40330.100*
H7B0.47880.39940.48640.100*
H7C0.38090.31930.50870.100*
C40.3906 (2)0.01151 (17)0.28384 (17)0.0727 (6)
H4A0.42310.05300.25980.109*
H4B0.35270.04670.22940.109*
H4C0.33690.00360.33630.109*
C20.5690 (2)0.1114 (2)0.24603 (18)0.0774 (7)
H2A0.62920.15080.27680.116*
H2B0.53300.15360.19540.116*
H2C0.59960.04900.21570.116*
S10.26970 (4)0.06903 (3)0.54981 (3)0.04839 (18)
N10.32617 (17)0.20204 (15)0.70857 (14)0.0754 (6)
C10.30276 (14)0.14704 (14)0.64316 (13)0.0459 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0425 (7)0.0407 (7)0.0369 (7)0.0020 (6)0.0008 (6)0.0052 (6)
C30.0555 (10)0.0441 (9)0.0432 (9)0.0098 (8)0.0096 (8)0.0048 (7)
C50.0523 (10)0.0544 (11)0.0586 (11)0.0096 (8)0.0106 (9)0.0078 (9)
C60.0553 (10)0.0370 (8)0.0489 (9)0.0081 (7)0.0062 (8)0.0020 (7)
C70.0863 (15)0.0420 (10)0.0714 (14)0.0048 (10)0.0026 (11)0.0043 (9)
C40.0806 (15)0.0675 (13)0.0700 (14)0.0024 (11)0.0161 (11)0.0230 (11)
C20.0745 (15)0.0887 (16)0.0690 (14)0.0145 (12)0.0166 (11)0.0150 (13)
S10.0527 (3)0.0463 (3)0.0462 (3)0.00456 (19)0.00129 (19)0.00236 (19)
N10.0879 (14)0.0808 (12)0.0576 (11)0.0223 (11)0.0029 (9)0.0157 (9)
C10.0422 (9)0.0503 (10)0.0451 (9)0.0037 (7)0.0023 (7)0.0037 (8)
Geometric parameters (Å, º) top
N2—C61.504 (2)C6—H6A0.9800
N2—C31.504 (2)C7—H7A0.9600
N2—H2D0.9000C7—H7B0.9600
N2—H2E0.9000C7—H7C0.9600
C3—C21.503 (3)C4—H4A0.9600
C3—C41.509 (3)C4—H4B0.9600
C3—H3A0.9800C4—H4C0.9600
C5—C61.513 (2)C2—H2A0.9600
C5—H5A0.9600C2—H2B0.9600
C5—H5B0.9600C2—H2C0.9600
C5—H5C0.9600S1—C11.6354 (19)
C6—C71.512 (3)N1—C11.149 (2)
C6—N2—C3117.69 (13)C7—C6—H6A108.6
C6—N2—H2D107.9C5—C6—H6A108.6
C3—N2—H2D107.9C6—C7—H7A109.5
C6—N2—H2E107.9C6—C7—H7B109.5
C3—N2—H2E107.9H7A—C7—H7B109.5
H2D—N2—H2E107.2C6—C7—H7C109.5
C2—C3—N2110.49 (15)H7A—C7—H7C109.5
C2—C3—C4112.70 (17)H7B—C7—H7C109.5
N2—C3—C4108.19 (15)C3—C4—H4A109.5
C2—C3—H3A108.5C3—C4—H4B109.5
N2—C3—H3A108.5H4A—C4—H4B109.5
C4—C3—H3A108.5C3—C4—H4C109.5
C6—C5—H5A109.5H4A—C4—H4C109.5
C6—C5—H5B109.5H4B—C4—H4C109.5
H5A—C5—H5B109.5C3—C2—H2A109.5
C6—C5—H5C109.5C3—C2—H2B109.5
H5A—C5—H5C109.5H2A—C2—H2B109.5
H5B—C5—H5C109.5C3—C2—H2C109.5
N2—C6—C7107.91 (15)H2A—C2—H2C109.5
N2—C6—C5110.65 (13)H2B—C2—H2C109.5
C7—C6—C5112.46 (16)N1—C1—S1179.8 (2)
N2—C6—H6A108.6
C6—N2—C3—C259.45 (19)C3—N2—C6—C7179.73 (14)
C6—N2—C3—C4176.74 (15)C3—N2—C6—C556.31 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···N1i0.901.992.888 (2)172
N2—H2E···S10.902.473.3490 (14)166
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H16N+·NCS
Mr160.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.785 (2), 12.716 (3), 13.288 (3)
V3)1991.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
19260, 2286, 1864
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.107, 1.12
No. of reflections2286
No. of parameters96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···N1i0.901.992.888 (2)172
N2—H2E···S10.902.473.3490 (14)166
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Excellent Doctoral Dissertation Fund of Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds