organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(1-Benzo­furan-2-yl)-2-(3,4,5-tri­meth­­oxy­phen­yl)acrylo­nitrile

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 4 November 2011; accepted 9 February 2012; online 17 February 2012)

In the title compound, C20H17NO4, the double bond of the acrylonitrile group separating the 1-benzofuran moiety from the 3,4,5-trimeth­oxy­phenyl ring has Z geometry. The 1-benzofuran groups are ππ stacked with inversion-related counterparts such that the furan ring centroid–centroid distance is 3.804 (5) Å. The dihedral angle between the planes of the trimeth­oxy­phenyl ring and the acrylonitrile group is 24.2 (2)°.

Related literature

For the biological activity, see: Naruto et al. (1983[Naruto, S., Mizuta, H., Yoshida, T. & Uno, H. (1983). Chem. Pharm. Bull. 31, 3022-3032.]); Parmar et al. (1988[Parmar, V. S., Kumar, A., Prasad, A. K. & Singh, S. K. (1988). Bioorg. Med. Chem. 25, 911-914.]); Shiba (1996[Shiba, S. A. (1996). Phosphorus Sulfur Silicon Relat. Elem. 114, 29-37.]); Sanna et al. (1999[Sanna, P., Carta, A. & Paglietti, G. (1999). Heterocycles, 51, 2171-2181.], 2000[Sanna, P., Carta, A. & Nikookar, M. E. R. (2000). Eur. J. Med. Chem. 35, 535-543.]); Ohsumi et al. (1998[Ohsumi, K., Nakagawa, R., Fukuda, Y. & Hatanaka, T. (1998). J. Med. Chem. 41, 3022-3032.]); Saczewski et al. (2004[Saczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. I. (2004). J. Med. Chem. 47, 3438-3449.]). For similar structures, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o521-o522.]); Seo et al. (2009[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.]); Sonar et al. (2007[Sonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743-o745.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NO4

  • Mr = 335.35

  • Monoclinic, C 2/c

  • a = 28.0892 (5) Å

  • b = 6.9555 (1) Å

  • c = 20.0908 (4) Å

  • β = 122.678 (1)°

  • V = 3303.93 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.24 × 0.20 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 26416 measured reflections

  • 3790 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.186

  • S = 1.02

  • 3790 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Acrylonitrile analogs that incorporate 1,2,4-triazole, benzimidazole, or 1,3,5-triazine heterocyclic groups have been found to possess interesting biological properties such as spasmolytic (Naruto et al., 1983), antioxidative (Parmar et al., 1988), insecticidal (Shiba, 1996), antitubercular (Sanna et al., 1999, 2000) and cytotoxic (Ohsumi et al., 1998; Saczewski et al., 2004) activities. From our previous studies, we reported the X-ray crystallographic data of two benzothiophene acrylonitrile analogs (Sonar et al., 2007). Based on this, and to compare the structure–activity relationships of different substituted acrylonitrile analogs, we have now prepared the title compound, (I), by the reaction of benzofuran-2-carbaldehyde with 2-(3,4,5-trimethoxyphenyl)acetonitrile in methanolic and sodium methoxide under reflux. The title compound was crystallized from the methanol. The molecular structure is shown in Fig.1. The 1-benzofuran ring is planar, with bond distances and angles comparable with those previously reported for other 1-benzofuran derivatives (Choi et al., 2007; Seo et al., 2009). The X-ray crystallographic studies revealed that the title compound is the Z isomer, since the 1-benzofuran ring is trans relative to the bulky 3,4,5-trimethoxy phenyl group. The 1-benzofuran groups are ππ stacked with inversion-related (1 - x, 1 - y, 1 - z) counterparts with a furan ring centroid—centroid distance of 3.804 (5) Å. Since the stacked benzofurans are inversion related, they are exactly parallel with perpendicular spacing of 3.409 (3) Å. The dihedral angle between the planes of the trimethoxy phenyl ring and the acrylonitrile group is 24.2 (2) Å.

Related literature top

For the biological activity, see: Naruto et al. (1983); Parmar et al. (1988); Shiba (1996); Sanna et al. (1999, 2000); Ohsumi et al. (1998); Saczewski et al. (2004). For similar structures, see: Choi et al. (2007); Seo et al. (2009); Sonar et al. (2007).

Experimental top

A mixture of benzofuran-2-carbaldehyde (0.3 g, 2.05 mmol), and 2-(3,4,5-trimethoxyphenyl)acetonitrile (0.45 g, 2.17 mmol) was refluxed in 5% methanolic sodium methoxide solution for 4 hrs. The reaction mixture was cooled to room temperature and added to ice cold water to afford a yellow crude solid, which was collected by filtration, washed with a 1:1 mixture of cold water and methanol, and suction–dried to afford the desired product. Crystallization from methanol gave a yellow crystalline product of (Z)-3-(benzofuran-2-yl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile that was suitable for X-ray crystallographic analysis. 1H NMR (CDCl3): δ 3.90 (s, 3H), 3.91 (s, 6H), 6.89 (s, 2H), 7.26–7.31 (dd, 1H), 7.36–7.40 (m, 1H), 7.41 (s, 1H), 7.50 (s, 1H),7.53–7.56(dd, 1H), 7.63–7. 65 (m, 1H); 13C NMR (CDCl3): δ 56.53, 61.25, 103.30, 110.89, 111.10, 111.71, 117.60, 122.16, 123.81, 126.94, 127.66, 128.29, 129.17, 139.50, 151.21, 153.68, 155.20.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (Csp2H) and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radius.
(Z)-3-(1-Benzofuran-2-yl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile top
Crystal data top
C20H17NO4F(000) = 1408
Mr = 335.35Dx = 1.348 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4101 reflections
a = 28.0892 (5) Åθ = 1.0–27.5°
b = 6.9555 (1) ŵ = 0.09 mm1
c = 20.0908 (4) ÅT = 90 K
β = 122.678 (1)°Block, yellow
V = 3303.93 (10) Å30.24 × 0.20 × 0.14 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
Detector resolution: 9.1 pixels mm-1h = 3536
ω scans at fixed χ = 55°k = 89
26416 measured reflectionsl = 2625
3790 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1061P)2]
where P = (Fo2 + 2Fc2)/3
3790 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H17NO4V = 3303.93 (10) Å3
Mr = 335.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.0892 (5) ŵ = 0.09 mm1
b = 6.9555 (1) ÅT = 90 K
c = 20.0908 (4) Å0.24 × 0.20 × 0.14 mm
β = 122.678 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2183 reflections with I > 2σ(I)
26416 measured reflectionsRint = 0.085
3790 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
3790 reflectionsΔρmin = 0.35 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.48054 (9)0.1350 (3)0.63530 (12)0.0314 (5)
O10.54675 (6)0.4633 (2)0.60175 (9)0.0235 (4)
O20.28706 (6)0.8492 (2)0.58677 (9)0.0236 (4)
O30.26167 (6)0.5664 (2)0.65217 (9)0.0241 (4)
O40.33056 (7)0.2610 (2)0.71961 (10)0.0267 (4)
C10.52309 (9)0.6378 (3)0.60312 (13)0.0209 (5)
C20.58856 (9)0.5094 (3)0.58841 (12)0.0205 (5)
C30.62441 (10)0.3797 (3)0.58480 (13)0.0246 (6)
H30.62090.24510.58900.030*
C40.66571 (10)0.4553 (3)0.57475 (13)0.0251 (6)
H40.69160.37170.57270.030*
C50.66959 (10)0.6539 (4)0.56754 (13)0.0261 (6)
H50.69840.70250.56100.031*
C60.63306 (10)0.7803 (4)0.56964 (14)0.0275 (6)
H60.63600.91450.56370.033*
C70.59119 (9)0.7082 (3)0.58073 (13)0.0223 (5)
C80.54814 (10)0.7870 (3)0.59013 (13)0.0238 (6)
H80.53880.91920.58770.029*
C90.47910 (9)0.6394 (3)0.61858 (13)0.0224 (5)
H90.46550.76360.61980.027*
C100.45380 (9)0.4932 (3)0.63175 (12)0.0195 (5)
C110.47002 (10)0.2961 (3)0.63316 (13)0.0227 (5)
C120.40551 (9)0.5193 (3)0.64184 (12)0.0192 (5)
C130.37106 (9)0.6807 (3)0.61109 (13)0.0212 (5)
H130.37960.77900.58630.025*
C140.32409 (9)0.6977 (3)0.61670 (12)0.0194 (5)
C150.31095 (9)0.5540 (3)0.65306 (12)0.0203 (5)
C160.34635 (9)0.3953 (3)0.68529 (12)0.0208 (5)
C170.39355 (9)0.3767 (3)0.68009 (13)0.0217 (5)
H170.41760.26780.70240.026*
C180.29675 (10)0.9924 (3)0.54421 (13)0.0260 (6)
H18A0.33421.04970.57900.039*
H18B0.26781.09260.52580.039*
H18C0.29490.93300.49860.039*
C190.26949 (10)0.6446 (4)0.72368 (14)0.0314 (6)
H19A0.29820.56970.76910.047*
H19B0.23370.63880.72110.047*
H19C0.28190.77870.72960.047*
C200.36866 (10)0.1064 (3)0.75978 (14)0.0260 (6)
H20A0.37130.02700.72160.039*
H20B0.35490.02780.78650.039*
H20C0.40610.15780.79900.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0334 (13)0.0259 (13)0.0429 (13)0.0016 (10)0.0257 (11)0.0004 (10)
O10.0229 (9)0.0234 (9)0.0289 (9)0.0020 (7)0.0170 (8)0.0005 (7)
O20.0240 (9)0.0228 (9)0.0273 (9)0.0060 (7)0.0161 (8)0.0043 (7)
O30.0194 (9)0.0304 (10)0.0251 (9)0.0007 (7)0.0136 (7)0.0019 (7)
O40.0247 (9)0.0252 (10)0.0334 (9)0.0018 (7)0.0178 (8)0.0077 (7)
C10.0202 (12)0.0174 (12)0.0225 (12)0.0031 (10)0.0100 (10)0.0011 (10)
C20.0174 (12)0.0239 (13)0.0198 (12)0.0016 (10)0.0097 (10)0.0023 (10)
C30.0281 (14)0.0211 (13)0.0274 (13)0.0042 (11)0.0168 (12)0.0002 (10)
C40.0224 (13)0.0326 (15)0.0208 (12)0.0045 (11)0.0121 (11)0.0009 (11)
C50.0229 (13)0.0344 (15)0.0248 (13)0.0004 (11)0.0155 (11)0.0016 (11)
C60.0293 (14)0.0260 (14)0.0326 (14)0.0035 (11)0.0203 (12)0.0019 (11)
C70.0207 (12)0.0231 (13)0.0229 (12)0.0009 (10)0.0118 (10)0.0008 (10)
C80.0234 (13)0.0187 (13)0.0285 (13)0.0028 (10)0.0136 (11)0.0001 (10)
C90.0206 (12)0.0205 (13)0.0258 (13)0.0027 (10)0.0123 (11)0.0033 (10)
C100.0204 (12)0.0186 (12)0.0193 (11)0.0021 (10)0.0107 (10)0.0001 (10)
C110.0218 (13)0.0237 (14)0.0273 (13)0.0000 (11)0.0163 (11)0.0001 (11)
C120.0180 (12)0.0195 (12)0.0184 (11)0.0021 (10)0.0086 (10)0.0035 (10)
C130.0247 (13)0.0192 (13)0.0224 (12)0.0006 (10)0.0144 (11)0.0004 (10)
C140.0200 (12)0.0184 (12)0.0181 (11)0.0013 (10)0.0092 (10)0.0016 (9)
C150.0183 (12)0.0229 (13)0.0193 (12)0.0008 (10)0.0100 (10)0.0024 (10)
C160.0229 (13)0.0195 (13)0.0193 (12)0.0038 (10)0.0109 (11)0.0001 (10)
C170.0215 (12)0.0190 (13)0.0204 (12)0.0029 (10)0.0086 (10)0.0027 (10)
C180.0267 (13)0.0260 (14)0.0256 (13)0.0037 (11)0.0142 (11)0.0023 (11)
C190.0293 (14)0.0412 (16)0.0279 (14)0.0019 (12)0.0181 (12)0.0012 (12)
C200.0320 (14)0.0211 (13)0.0271 (13)0.0000 (11)0.0173 (12)0.0045 (10)
Geometric parameters (Å, º) top
N1—C111.154 (3)C8—H80.9500
O1—C21.376 (3)C9—C101.346 (3)
O1—C11.391 (3)C9—H90.9500
O2—C141.371 (3)C10—C111.440 (3)
O2—C181.431 (3)C10—C121.487 (3)
O3—C151.377 (3)C12—C131.390 (3)
O3—C191.438 (3)C12—C171.402 (3)
O4—C161.370 (3)C13—C141.388 (3)
O4—C201.421 (3)C13—H130.9500
C1—C81.356 (3)C14—C151.400 (3)
C1—C91.428 (3)C15—C161.390 (3)
C2—C31.383 (3)C16—C171.391 (3)
C2—C71.397 (3)C17—H170.9500
C3—C41.384 (3)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.400 (3)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.369 (3)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—C71.403 (3)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.430 (3)C20—H20C0.9800
C2—O1—C1105.54 (17)C13—C12—C10120.4 (2)
C14—O2—C18116.95 (17)C17—C12—C10119.6 (2)
C15—O3—C19113.60 (17)C14—C13—C12119.8 (2)
C16—O4—C20116.92 (17)C14—C13—H13120.1
C8—C1—O1111.17 (19)C12—C13—H13120.1
C8—C1—C9129.5 (2)O2—C14—C13124.0 (2)
O1—C1—C9119.36 (19)O2—C14—C15115.23 (19)
O1—C2—C3125.5 (2)C13—C14—C15120.8 (2)
O1—C2—C7110.68 (19)O3—C15—C16121.12 (19)
C3—C2—C7123.8 (2)O3—C15—C14119.68 (19)
C2—C3—C4116.8 (2)C16—C15—C14119.1 (2)
C2—C3—H3121.6O4—C16—C15115.57 (19)
C4—C3—H3121.6O4—C16—C17123.7 (2)
C3—C4—C5120.6 (2)C15—C16—C17120.7 (2)
C3—C4—H4119.7C16—C17—C12119.7 (2)
C5—C4—H4119.7C16—C17—H17120.2
C6—C5—C4122.0 (2)C12—C17—H17120.2
C6—C5—H5119.0O2—C18—H18A109.5
C4—C5—H5119.0O2—C18—H18B109.5
C5—C6—C7118.8 (2)H18A—C18—H18B109.5
C5—C6—H6120.6O2—C18—H18C109.5
C7—C6—H6120.6H18A—C18—H18C109.5
C2—C7—C6118.1 (2)H18B—C18—H18C109.5
C2—C7—C8105.4 (2)O3—C19—H19A109.5
C6—C7—C8136.5 (2)O3—C19—H19B109.5
C1—C8—C7107.2 (2)H19A—C19—H19B109.5
C1—C8—H8126.4O3—C19—H19C109.5
C7—C8—H8126.4H19A—C19—H19C109.5
C10—C9—C1130.3 (2)H19B—C19—H19C109.5
C10—C9—H9114.8O4—C20—H20A109.5
C1—C9—H9114.8O4—C20—H20B109.5
C9—C10—C11121.9 (2)H20A—C20—H20B109.5
C9—C10—C12123.5 (2)O4—C20—H20C109.5
C11—C10—C12114.56 (19)H20A—C20—H20C109.5
N1—C11—C10175.8 (2)H20B—C20—H20C109.5
C13—C12—C17120.0 (2)
C2—O1—C1—C80.8 (2)C9—C10—C12—C17159.1 (2)
C2—O1—C1—C9177.95 (18)C11—C10—C12—C1723.9 (3)
C1—O1—C2—C3178.0 (2)C17—C12—C13—C141.6 (3)
C1—O1—C2—C70.5 (2)C10—C12—C13—C14176.09 (19)
O1—C2—C3—C4176.8 (2)C18—O2—C14—C133.0 (3)
C7—C2—C3—C41.5 (3)C18—O2—C14—C15175.70 (18)
C2—C3—C4—C50.9 (3)C12—C13—C14—O2178.6 (2)
C3—C4—C5—C60.4 (4)C12—C13—C14—C150.0 (3)
C4—C5—C6—C71.1 (4)C19—O3—C15—C1685.9 (2)
O1—C2—C7—C6177.78 (19)C19—O3—C15—C1498.1 (2)
C3—C2—C7—C60.8 (3)O2—C14—C15—O34.1 (3)
O1—C2—C7—C80.0 (2)C13—C14—C15—O3174.67 (19)
C3—C2—C7—C8178.5 (2)O2—C14—C15—C16179.78 (19)
C5—C6—C7—C20.6 (3)C13—C14—C15—C161.5 (3)
C5—C6—C7—C8176.3 (3)C20—O4—C16—C15174.09 (19)
O1—C1—C8—C70.8 (3)C20—O4—C16—C177.6 (3)
C9—C1—C8—C7177.8 (2)O3—C15—C16—O43.8 (3)
C2—C7—C8—C10.5 (3)C14—C15—C16—O4179.84 (19)
C6—C7—C8—C1176.6 (3)O3—C15—C16—C17174.64 (19)
C8—C1—C9—C10179.9 (2)C14—C15—C16—C171.4 (3)
O1—C1—C9—C101.3 (4)O4—C16—C17—C12178.18 (19)
C1—C9—C10—C110.9 (4)C15—C16—C17—C120.1 (3)
C1—C9—C10—C12175.8 (2)C13—C12—C17—C161.6 (3)
C9—C10—C12—C1323.2 (3)C10—C12—C17—C16176.07 (19)
C11—C10—C12—C13153.8 (2)

Experimental details

Crystal data
Chemical formulaC20H17NO4
Mr335.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)28.0892 (5), 6.9555 (1), 20.0908 (4)
β (°) 122.678 (1)
V3)3303.93 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.20 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26416, 3790, 2183
Rint0.085
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.186, 1.02
No. of reflections3790
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.35

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant No. RO1 CA140409.

References

First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o521–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaruto, S., Mizuta, H., Yoshida, T. & Uno, H. (1983). Chem. Pharm. Bull. 31, 3022–3032.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOhsumi, K., Nakagawa, R., Fukuda, Y. & Hatanaka, T. (1998). J. Med. Chem. 41, 3022–3032.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParmar, V. S., Kumar, A., Prasad, A. K. & Singh, S. K. (1988). Bioorg. Med. Chem. 25, 911–914.  Google Scholar
First citationSaczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. I. (2004). J. Med. Chem. 47, 3438–3449.  Web of Science PubMed CAS Google Scholar
First citationSanna, P., Carta, A. & Nikookar, M. E. R. (2000). Eur. J. Med. Chem. 35, 535–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSanna, P., Carta, A. & Paglietti, G. (1999). Heterocycles, 51, 2171–2181.  CrossRef CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A. (1996). Phosphorus Sulfur Silicon Relat. Elem. 114, 29–37.  CrossRef CAS Web of Science Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743–o745.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds